Abstract

This study presents the fabrication and evaluation of (TiN + TiC)/TC4 hybrid nanocomposite cladding on TC4 titanium alloy substrates using a gas tungsten arc cladding process. Microstructural investigations using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction confirmed the formation of denser claddings featuring both TiC and TiN reinforcement phases, along with intermetallic compounds such as AlN and Ti2N. Microhardness testing revealed a significant improvement in clad layer hardness reaching approximately 1100 HV compared to the substrate's 350 HV. This enhanced hardness translated into superior wear resistance. Pin-on-disc wear tests performed from room temperature up to 500 °C have shown the wear-rate acceleration with the temperature, particularly from 300 °C due to thermal softening, oxidation, and tribological changes. At 500 °C, abrasive wear, oxidative wear, and delamination were dominant. The wear resistance decreased by 375.7% compared to room temperature, with reductions of 183% and 259.7% at 100 °C and 300 °C, respectively. This highlights the critical role of dual TiN–TiC reinforcement in maintaining wear resistance at 300 °C. However, at 500 °C, elevated oxidation and matrix softening increased the coefficient of friction until 100 m of sliding distance, where stabilization occurred. Hybrid ceramic reinforcement improved abrasive wear resistance and limited oxidation wear by reducing tribo-oxide formation up to 300 °C. This enhancement in abrasive wear resistance further led to a change in wear mechanisms from two-body to three-body abrasion. Adhesion and delamination wear were more prominent at lower sliding velocities and elevated temperatures due to matrix softening and increased material transformation into debris. TiC and TiN reinforcement particulates improved wear resistance at high temperatures by mitigating softening effects and enhancing load-bearing capacity. The constructed wear mechanism maps described clear performance windows, providing a robust framework for selecting optimal parameters to enhance the wear performance and improve the operational lifespan of hybrid composite claddings in demanding tribological environments.

References

1.
Liu
,
X. B.
,
Meng
,
X. J.
,
Liu
,
H. Q.
,
Shi
,
G. L.
,
Wu
,
S. H.
,
Sun
,
C. F.
,
Wang
,
M. D.
, and
Qi
,
L. H.
,
2014
, “
Development and Characterization of Laser Clad High-Temperature Self-Lubricating Wear-Resistant Composite Coatings on Ti–6Al–4V Alloy
,”
Mater. Des.
,
55
, pp.
404
409
.
2.
Li
,
M.
,
Huang
,
J.
,
Zhu
,
Y. Y.
, and
Li
,
Z. G.
,
2012
, “
Effect of Heat Input on the Microstructure of In-Situ Synthesized TiN-TiB/Ti Based Composite Coating by Laser Cladding
,”
Surf. Coatings Technol.
,
206
(
19–20
), pp.
4021
4026
.
3.
Baker
,
T. N.
, and
Selamat
,
M. S.
,
2008
, “
Surface Engineering of Ti–6Al–4V by Nitriding and Powder Alloying Using CW CO2 Laser
,”
Mater. Sci. Technol.
,
24
(
2
), pp.
189
200
.
4.
Azwan
,
M.
,
Maleque
,
M. A.
, and
Rahman
,
M. M.
,
2019
, “
TIG Torch Surfacing of Metallic Materials—A Critical Review
,”
Trans. IMF
,
97
(
1
), pp.
12
21
.
5.
Kumar
,
J. K.
,
Rao
,
T. B.
, and
Krishna
,
K. R.
,
2023
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
6.
Naghiyan Fesharaki
,
M.
,
Shoja-Razavi
,
R.
,
Mansouri
,
H. A.
, and
Jamali
,
H.
,
2018
, “
Microstructure Investigation of Inconel 625 Coating Obtained by Laser Cladding and TIG Cladding Methods
,”
Surf. Coatings Technol.
,
353
, pp.
25
31
.
7.
Li
,
W.
,
Li
,
S.
,
Liu
,
J.
,
Zhang
,
A.
,
Zhou
,
Y.
,
Wei
,
Q.
,
Yan
,
C.
, and
Shi
,
Y.
,
2016
, “
Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism
,”
Mater. Sci. Eng. A
,
663
, pp.
116
125
.
8.
Haftlang
,
F.
,
Hanzaki
,
A. Z.
,
Abedi
,
H. R.
,
Preisler
,
D.
, and
Bartha
,
K.
,
2019
, “
The Subsurface Frictional Hardening: A New Approach to Improve the High-Speed Wear Performance of Ti-29Nb-14Ta-4.5Zr Alloy Against Ti-6Al-4V Extra-Low Interstitial
,”
Wear
,
422–423
, pp.
137
150
.
9.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Soodi
,
M.
, and
Wu
,
X.
,
2019
, “
Influences of Depositing Materials, Processing Parameters and Heating Conditions on Material Characteristics of Laser-Cladded Hypereutectoid Rails
,”
J. Mater. Process. Technol.
,
263
, pp.
1
20
.
10.
Sabahi Namini
,
A.
,
Dilawary
,
S. A. A.
,
Motallebzadeh
,
A.
, and
Shahedi Asl
,
M.
,
2019
, “
Effect of TiB2 Addition on the Elevated Temperature Tribological Behavior of Spark Plasma Sintered Ti Matrix Composite
,”
Compos. Part B Eng.
,
172
, pp.
271
280
.
11.
Coulibaly
,
M.
, and
Chassaing
,
G.
,
2017
, “
Thermomechanical Modelling of Dry Friction at High Velocity Applied to a Ti6Al4V-Ti6Al4V Tribopair
,”
Tribol. Int.
,
119
, pp.
795
808
.
12.
Dalili
,
N.
,
Edrisy
,
A.
,
Farokhzadeh
,
K.
,
Li
,
J.
,
Lo
,
J.
, and
Riahi
,
A. R.
,
2010
, “
Improving the Wear Resistance of Ti–6Al–4 V/TiC Composites Through Thermal Oxidation (TO)
,”
Wear
,
269
(
7–8
), pp.
590
601
.
13.
Zheng
,
B.
,
Dong
,
F.
,
Yuan
,
X.
,
Zhang
,
Y.
,
Huang
,
H.
,
Zuo
,
X.
,
Luo
,
L.
, et al
,
2019
, “
Investigation on Microstructures and Mechanical Behavior of In-Situ Synthesized TiC and TiB Reinforced Ti6Al4 V Based Composite
,”
Mater. Res. Express
,
6
(
11
), p.
116597
.
14.
Choi
,
B.-J.
,
Kim
,
I.-Y.
,
Lee
,
Y.-Z.
, and
Kim
,
Y.-J.
,
2014
, “
Microstructure and Friction/Wear Behavior of (TiB + TiC) Particulate-Reinforced Titanium Matrix Composites
,”
Wear
,
318
(
1–2
), pp.
68
77
.
15.
Kim
,
I. Y.
,
Choi
,
B. J.
,
Kim
,
Y. J.
, and
Lee
,
Y. Z.
,
2011
, “
Friction and Wear Behavior of Titanium Matrix (TiB + TiC) Composites
,”
Wear
,
271
(
9–10
), pp.
1962
1965
.
16.
Bai
,
M.
,
Namus
,
R.
,
Xu
,
Y.
,
Guan
,
D.
,
Rainforth
,
M. W.
, and
Inkson
,
B. J.
,
2019
, “
In-Situ Ti-6Al-4V/TiC Composites Synthesized by Reactive Spark Plasma Sintering: Processing, Microstructure, and Dry Sliding Wear Behaviour
,”
Wear
,
432–433
, p.
202944
.
17.
Hao
,
X.
,
Liu
,
H.
,
Zhang
,
X.
,
Chen
,
L.
,
Wang
,
Y.
,
Yang
,
C.
and
Liu
,
Y.
,
2024
, “
Friction–Wear Behaviors and Microstructure of AlTiVCrNb Lightweight Refractory High-Entropy Alloy Coating Prepared by Laser Cladding on Ti–6Al–4 V Substrate
,”
J. Mater. Res. Technol.
,
29
(
2023
), pp.
1
11
.
18.
Zambrano Carrullo
,
J. C.
,
Pereira Falcón
,
J. C.
, and
Amigó Borrás
, V.,
2019
, “
Influence of Process Parameters and Initial Microstructure on the Oxidation Resistance of Ti48Al2Cr2Nb Coating Obtained by Laser Metal Deposition
,”
Surf. Coatings Technol.
,
358
(
2018
), pp.
114
124
.
19.
Munagala
,
V. N. V.
,
Torgerson
,
T. B.
,
Scharf
,
T. W.
, and
Chromik
,
R. R.
,
2019
, “
High Temperature Friction and Wear Behavior of Cold-Sprayed Ti6Al4 V and Ti6Al4V-TiC Composite Coatings
,”
Wear
,
426–427
, pp.
357
369
.
20.
Zheng
,
B.
,
Dong
,
F.
,
Yuan
,
X.
,
Zhang
,
Y.
,
Huang
,
H.
,
Zuo
,
X.
,
Luo
,
L.
,
Wang
,
L.
,
Su
,
Y.
,
Wang
,
X.
, and
Shi
,
K.
,
2020
, “
Evaluation on Tribological Characteristics of (TiC + TiB)/Ti–6Al–4 V Composite in the Range From 25 °C to 600 °C
,”
Wear
,
450–451
, p.
203256
.
21.
Wang
,
W. C.
,
Li
,
J. X.
,
Yuan
,
G. E.
, and
Kong
,
D. J.
,
2021
, “
Structural Characteristics and High-Temperature Tribological Behaviors of Laser Cladded NiCoCrAlY–B4C Composite Coatings on Ti6Al4 V Alloy
,”
Trans. Nonferrous Met. Soc. China
,
31
(
9
), pp.
2729
2739
.
22.
Zhang
,
D.
,
Cui
,
X.
,
Jin
,
G.
,
Song
,
Q.
,
Yuan
,
C.
,
Fang
,
Y.
, and
Wen
,
X.
,
2019
, “
Microstructure and Tribological Performance of Laser-Cladded Ni60 + h-BN Coatings on Ti-6Al-4 V Alloy at High Temperature
,”
Tribol. Trans.
,
62
(
5
), pp.
779
788
.
23.
Liu
,
X. B.
,
Meng
,
X. J.
,
Liu
,
H. Q.
,
Shi
,
G. L.
,
Wu
,
S. H.
,
Sun
,
C. F.
,
Wang
,
M. D.
, and
Qi
,
L. H.
,
2014
, “
Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti–6Al–4 V Alloy
,”
Mater. Des.
,
55
, pp.
404
409
.
24.
Birada
,
L. M.
,
Vyshnavi
,
P.
, and
Rao
,
T. B.
,
2024
, “
NiCrBSi/WC Composite Claddings Processed on AISI 316L Steel Alloy by the Direct Laser Deposition Process: Studies on Dry Sliding Wear Behavior and Wear Mechanism Maps
,”
ASME J. Tribol.
,
146
(
9
), p.
091401
.
25.
Rama Krishna
,
K.
,
Rao
,
T. B.
, and
Krishna
,
A. G.
,
2025
, “
Studies on Tribological Characteristics and Wear Mechanisms of (TiN + TiC) Hybrid Nanocomposite Claddings Deposited on TC4-Grade Titanium Alloy Substrate by the Tungsten Inert Gas Cladding Process
,”
ASME J. Tribol.
,
147
(
4
), p.
041402
.
26.
Prasad
,
R.
,
Waghmare
,
D. T.
,
Kumar
,
K.
, and
Masanta
,
M.
,
2020
, “
Effect of Overlapping Condition on Large Area NiTi Layer Deposited on Ti-6Al-4 V Alloy by TIG Cladding Technique
,”
Surf. Coatings Technol.
,
385
, p.
125417
.
27.
Huang
,
J.
,
Liu
,
S.
,
Yu
,
S.
,
Yu
,
X.
,
Chen
,
H.
, and
Fan
,
D.
,
2020
, “
Arc Deposition of Wear Resistant Layer TiN on Ti6Al4 V Using Simultaneous Feeding of Nitrogen and Wire
,”
Surf. Coatings Technol.
,
381
, p.
125141
.
28.
Foadian
,
Soltanieh, M.
,
Adeli
, and
Etminanbakhsh
,
2016
, “
The Kinetics of TiAl3 Formation in Explosively Welded Ti-Al Multilayers During Heat Treatment
,”
Metall. Mater. Trans. B Process Metall. Mater. Process. Sci.
,
47
(
5
), pp.
2931
2937
.
29.
He
,
X.
,
Song
,
R. G.
, and
Kong
,
D. J.
,
2019
, “
Effects of TiC on the Microstructure and Properties of TiC/TiAl Composite Coating Prepared by Laser Cladding
,”
Opt. Laser Technol.
,
112
, pp.
339
348
.
30.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Sliding Wear of Stainless Steel Matrix Composite Reinforced With TiB2 Particles
,”
Mater. Lett.
,
41
(
4
), pp.
153
158
.
31.
Téllez-Villaseñor
,
M. A.
,
León-Patiño
,
C. A.
,
Aguilar-Reyes
,
E. A.
, and
Bedolla-Jacuinde
,
A.
,
2021
, “
Effect of Load and Sliding Velocity on the Wear Behaviour of Infiltrated TiC/Cu–Ni Composites
,”
Wear
,
484–485
, p.
203667
.
32.
Dou
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
,
Xiong
,
Z.
, and
Xia
,
Q.
,
2014
, “
Friction and Wear Behaviors of B4C/6061Al Composite
,”
Mater. Des.
,
60
, pp.
669
677
.
33.
Rao
,
T. B.
,
2021
, “
Microstructural, Mechanical, and Wear Properties Characterization and Strengthening Mechanisms of Al7075/SiCnp Composites Processed Through Ultrasonic Cavitation Assisted Stir-Casting
,”
Mater. Sci. Eng. A
,
805
, p.
140553
.
You do not currently have access to this content.