Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A numerical and experimental study is conducted to investigate the effects of heat transfer on the squeeze-film flow between two parallel rotating disks, one of which is flat while the other has a grooved, highly rough surface. A conjugate heat transfer technique is developed to evaluate the torque and temperature distribution within the thin-film lubrication system, as the two disks advance toward each other. For the fluid domain, the energy equation is solved simultaneously with the squeeze-film equations coupled with an empirical contact model. Additionally, the energy equation is solved for the flat disk to determine the heat transfer by conduction while the grooved disk is assumed to be adiabatic. The heat exchange at the solid–fluid interface is determined iteratively using the energy equations from both the fluid and solid domains. The governing equations are solved using the finite-volume method, and the numerical model is tested for grid convergence and conservation of energy. An experimental study is conducted to collect torque and temperature data that are used to validate the model for the engagement dynamics of a wet clutch. The numerical and experimental analyses demonstrate the importance of thermal effects when evaluating the dynamics of squeeze-film flow between two rotating disks. Heat transfer affects the viscous and mixed lubrication phases of the engagement process significantly, especially for low initial temperatures. Moreover, the study highlights the strong effects of flow recirculation on heat transfer due to the complex geometry of the grooved friction material.

References

1.
Reynolds
,
O.
,
1886
, “
IV. On the Theory of Lubrication and Its Application to Mr. Beauchamp Towers Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.
2.
Fujii
,
Y.
,
Kapas
,
N.
, and
Tseng
,
J.
,
2014
,
"Clutch Wet," Encyclopedia of Automotive Engineering
,
John Wiley & Sons, Ltd.
,
Online
.
3.
Haria
,
H.
,
2023
, “Multi-Physics Numerical Modeling and Design Optimization of a Wet Clutch,” PhD dissertation,
Mechanical Engineering, University of Michigan, Ann Arbor
.
4.
Wang
,
P.
,
2018
, “Three-Dimensional Analysis of Multi-Phase Flow Between Rotating Disks With Grooved Friction Surfaces,” PhD dissertation,
Mechanical Engineering, University of Michigan, Ann Arbor
.
5.
Wang
,
P.
,
Katopodes
,
N.
, and
Fujii
,
Y.
,
2017
, “
Two-Phase MRF Model for Wet Clutch Drag Simulation
,”
SAE Int. J. Engines
,
10
(
3
), p.
1327
.
6.
Hamrock
,
B.
,
Schmidt
,
S.
, and
Jacobson
,
B.
,
2004
,
Fundamentals of Fluid Film Lubrication
, 2nd ed.,
Marcel Dekker, Inc.
,
New York
.
7.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
114
), pp.
300
319
.
8.
Haria
,
H.
,
Fujii
,
Y.
,
Pietron
,
G.
,
Wang
,
P.
,
Katopodes
,
N.
,
Miyagawa
,
M.
,
Takahiro
,
T.
,
Nakamura
,
S.
,
Wendel
,
M.
, and
Miyoshi
,
H.
,
2019
, “Development of Empirical Asperity Contact Model for Wet Friction Material,” SAE Technical Paper 2019-01-1301.
9.
Natsumeda
,
S.
, and
Miyoshi
,
T.
,
1994
, “
Numerical Simulation of Engagement of Paper Based Wet Clutch Facing
,”
ASME J. Tribol.
,
116
(
2
), pp.
232
237
.
10.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
1996
, “
Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches
,”
ASME J. Tribol.
,
118
(
1
), pp.
137
146
.
11.
Holgerson
,
M.
,
1997
, “
Apparatus for Measurement of Engagement Characteristics of a Wet Clutch
,”
Wear
,
213
(
1–2
), pp.
140
147
.
12.
Davis
,
C.
,
Sadeghi
,
F.
, and
Krousgrill
,
C.
,
2000
, “
A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison
,”
ASME J. Tribol.
,
122
(
1
), pp.
110
118
.
13.
Deur
,
J.
,
Petric
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2005
, “Modeling of Wet Clutch Engagement Including a Thorough Experimental Validation,” SAE Technical Paper 2005-01-0877.
14.
Zagrodzki
,
P.
,
1985
, “
Numerical Analysis of Temperature Fields and Thermal Stresses in the Friction Discs of a Multidisc Wet Clutch
,”
Wear
,
101
(
3
), pp.
255
271
.
15.
Zagrodzki
,
P.
,
1990
, “
Analysis of Thermomechanical Phenomena in Multidisc Clutches and Brakes
,”
Wear
,
140
(
2
), pp.
291
308
.
16.
Yang
,
Y.
,
Lam
,
R.
,
Chen
,
Y.
, and
Yabe
,
H.
,
1995
, “
Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisc Wet Clutch
,”
SAE Trans.
,
104
, pp.
1674
1688
.
17.
Jang
,
J.
, and
Khonsari
,
M.
,
1999
, “
Thermal Characteristics of a Wet Clutch
,”
ASME J. Tribol.
,
121
(
3
), pp.
610
617
.
18.
Cho
,
J.
,
Katopodes
,
N.
,
Kapas
,
N.
, and
Fujii
,
Y.
,
2011
, “CFD Modeling of Squeeze Film Flow in Wet Clutch,” SAE Technical Paper 2011-01-1236.
19.
Wang
,
P.
,
Katopodes
,
N.
, and
Fujii
,
Y.
,
2018
, “
Statistical Modeling of Plate Clearance Distribution for Wet Clutch Drag Analysis
,”
SAE Int. J. Passeng. Cars - Mech. Syst.
,
11
(
1
), pp.
76
88
.
20.
Fujii
,
Y.
,
Tobler
,
W.
,
Pietron
,
G.
,
Cao
,
M.
, and
Wang
,
K.
,
2003
, “Review of Wet Friction Component Models for Automatic Transmission Shift Analysis,” SAE Technical Paper 2003-01-1665.
21.
Szeri
,
A.
,
1998
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge
.
22.
Katopodes
,
N.
,
2018
,
Free-Surface Flow: I. Environmental Fluid Mechanics
,
Elsevier
,
Amsterdam
.
23.
Wilhelm
,
D.
,
2015
, “
Rotating Flow Simulations With OpenFOAM
,”
Int. J. Aeronaut. Sci. Aerosp. Res.
,
S1
(
1
), pp.
1
7
.
24.
Kimura
,
Y.
, and
Ohtani
,
C.
,
1991
, “Observation of Solid Contact With a Contact-Microscope,” Seiken Leaflet, No. 199, The University of Tokyo.
25.
Haria
,
H.
,
Popejoy
,
D.
,
Divinagracia
,
R.
,
Fujii
,
Y.
,
Miyagawa
,
M.
,
Tsuchiya
,
T.
,
Nakamura
,
S.
,
Wendel
,
M.
, and
Katopodes
,
N.
,
2020
, “Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches,” SAE Technical Paper 2020-01-1417.
26.
Haria
,
H.
,
Fujii
,
Y.
,
Pietron
,
G.
,
Miyagawa
,
M.
,
Tsuchiya
,
T.
,
Nakamura
,
S.
,
Wendel
,
M.
, et al
,
2019
, “
Development of Empirical Asperity Contact Model for Wet Friction Material
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
,
1
(
2
), pp.
771
781
.
27.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
,
Fureby
,
C.
, and
OpenFOAM
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Technique
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
28.
Katopodes
,
N.
,
2018
,
Free-Surface Flow: III. Computational Methods
,
Elsevier
,
Amsterdam
.
29.
Cho
,
J.
,
2012
, “A Multi-Physics Model for Wet Clutch Dynamics,” PhD dissertation,
Mechanical Engineering, University of Michigan, Ann Arbor
.
30.
Haria
,
H.
,
Fujii
,
Y.
,
Pietron
,
G.
,
Sun
,
A.
,
Tsuchiya
,
T.
,
Miyagawa
,
M.
,
Nakamura
,
S.
, et al
,
2019
, “Advanced Bench Test Methodology for Generating Wet Clutch Torque Transfer Functions for Enhanced Drivability Simulations,” SAE Technical Paper 2019-01-2340.
31.
Haria
,
H.
,
McCallum
,
J.
,
Fujii
,
Y.
,
Tsuchiya
,
T.
,
Miyagawa
,
M.
,
Nakamura
,
S.
,
Wendel
,
M.
, and
Katopodes
,
N.
,
2020
, “Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations,” SAE Technical Paper 2020-01-1414.
32.
Gao
,
H.
,
Barber
,
G.
, and
Chu
,
H.
,
2002
, “
Friction Characteristics of a Paper-Based Friction Material
,”
Int. J. Automot. Technol.
,
3
(
4
), pp.
171
176
.
33.
Kemp
,
S.
, and
Linden
,
J.
,
1990
, “Physical and Chemical Properties of a Typical Automatic Transmission Fluid,” SAE Technical Paper 902148.
34.
Gao
,
H.
,
Barber
,
G.
, and
Shillor
,
M.
,
2002
, “
Numerical Simulation of Engagement of a Wet Clutch With Skewed Surface Roughness
,”
ASME J. Tribol.
,
124
(
2
), pp.
305
312
.
35.
Wu
,
P.
,
Xu
,
J.
, and
Zhou
,
X.
,
2019
, “
Numerical and Experimental Research on Engagement Process of Wet Multi-Plate Friction Clutches With Groove Consideration
,”
Proc. Inst. Mech. Eng., Part J.
,
233
(
10
), pp.
1464
1482
.
You do not currently have access to this content.