Abstract

In this work, laser shock peening (LSP) was utilized as a surface-processing technique to modify the tribocorrosion characteristics of cold-spray (CS) 316L SS. Results indicate that with the influence of LSP, the degree of wear–corrosion synergism was effectively decreased. Particularly, the degree of wear loss being accelerated by electrochemical degradation was effectively reduced due to the cumulative effects of refined crystallinity, increased surface hardness, closure of surface pores, and decrease in wettability. Consequentially, the wear mechanism transitioned from being an abrasive type with cracking and delamination to an abrasive type free of any defects. From these findings, it can be inferred that LSP is indeed a viable method to improve the tribocorrosion characteristics of CS 316L SS.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sun
,
Y.
, and
Rana
,
V.
,
2011
, “
Tribocorrosion Behaviour of AISI 304 Stainless Steel in 0.5M NaCl Solution
,”
Mater. Chem. Phys.
,
129
(
1
), pp.
138
147
.
2.
Kok
,
Y. N.
,
Akid
,
R.
, and
Hovsepian
,
P. E.
,
2005
, “
Tribocorrosion Testing of Stainless Steel (SS) and PVD Coated SS Using a Modified Scanning Reference Electrode Technique
,”
Wear
,
259
(
7
), pp.
1472
1481
.
3.
Ghanbarzadeh
,
A.
,
Salehi
,
F. M.
,
Bryant
,
M.
, and
Neville
,
A.
,
2019
, “
A New Asperity-Scale Mechanistic Model of Tribocorrosive Wear: Synergistic Effects of Mechanical Wear and Corrosion
,”
ASME J. Tribol.
,
141
(
2
), p.
021601
.
4.
Han
,
G.
,
Jiang
,
P.
,
Wang
,
J.
, and
Yan
,
F.
,
2017
, “
Corrosion-Wear Behavior of 316L Stainless Steel Under Different Applied Potentials
,”
Ind. Lubr. Tribol.
,
69
(
2
), pp.
234
240
.
5.
López-Ortega
,
A.
,
Bayón
,
R.
, and
Arana
,
J. L.
,
2018
, “
Evaluation of Protective Coatings for Offshore Applications. Corrosion and Tribocorrosion Behavior in Synthetic Seawater
,”
Surf. Coat. Technol.
,
349
, pp.
1083
1097
.
6.
Nautiyal
,
H.
,
Sharma
,
P. K.
, and
Tyagi
,
R.
,
2020
, “
High-Temperature Erosive Wear Behavior of High-Velocity Oxy-Fuel Sprayed Cr3C225 (Ni20Cr) Coating on (AISI 316) Austenitic Steel
,”
ASME J. Tribol.
,
142
(
7
), p.
071702
.
7.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Chagouri
,
T.
,
Kazadi
,
S.
,
Gharib
,
M.
, and
Liang
,
H.
,
2022
, “
Corrosion-Resistant Metal-Ceramic Composite Coatings for Tribological Applications
,”
ASME J. Tribol.
,
144
(
5
), p.
051401
.
8.
Alonso
,
L.
,
Garrido
,
M. A.
, and
Poza
,
P.
,
2022
, “
An Optimisation Method for the Cold-Spray Process: On the Nozzle Geometry
,”
Mater. Des.
,
214
, p.
110387
.
9.
Feng
,
S.
,
Guan
,
S.
,
Story
,
W. A.
,
Ren
,
J.
,
Zhang
,
S.
,
Te
,
A.
,
Gleason
,
M. A.
, et al
,
2022
, “
Cold Spray Additive Manufacturing of CoCrFeNiMn High-Entropy Alloy: Process Development, Microstructure, and Mechanical Properties
,”
J. Therm. Spray Technol.
,
31
(
4
), pp.
1222
1231
.
10.
Yu
,
T.
,
Chen
,
M.
, and
Wu
,
Z.
,
2022
, “
Experimental and Numerical Study of Deposition Mechanisms for Cold Spray Additive Manufacturing Process
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
276
290
.
11.
Hemeda
,
A. A.
,
Mishra
,
A.
,
Xu
,
J.
,
Wu
,
C. T.
,
Cote
,
D.
,
Siopis
,
M.
,
Nault
,
I. M.
, et al
,
2022
, “
Heterogeneous Distribution of Mechanical Properties of Single-Particle Cold Spray Impacts
,”
J. Therm. Spray Technol.
,
31
(
3
), pp.
498
507
.
12.
Bi
,
J. K.
,
Loke
,
Z. C. K.
,
Lim
,
C. K. R.
,
Teng
,
K. H. T.
, and
Koh
,
P. K.
,
2022
, “
Mechanical Properties of Cold Sprayed Aluminium 2024 and 7075 Coatings for Repairs
,”
Aerospace
,
9
(
2
), p.
65
.
13.
Ralls
,
A. M.
,
Kasar
,
A. K.
,
Daroonparvar
,
M.
,
Siddaiah
,
A.
,
Kumar
,
P.
,
Kay
,
C. M.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2022
, “
Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy
,”
Coatings
,
12
(
2
), p.
263
.
14.
Ralls
,
A. M.
,
Daroonparvar
,
M.
,
John
,
M.
,
Sikdar
,
S.
, and
Menezes
,
P. L.
,
2023
, “
Solid-State Cold Spray Additive Manufacturing of Ni-Based Superalloys: Processing–Microstructure–Property Relationships
,”
Materials
,
16
(
7
), p.
2765
.
15.
An
,
S.
,
Joshi
,
B.
,
Yarin
,
A. L.
,
Swihart
,
M. T.
, and
Yoon
,
S. S.
,
2020
, “
Supersonic Cold Spraying for Energy and Environmental Applications: One-Step Scalable Coating Technology for Advanced Micro- and Nanotextured Materials
,”
Adv. Mater.
,
32
(
2
), p.
1905028
.
16.
Walker
,
M.
,
2018
, “
Microstructure and Bonding Mechanisms in Cold Spray Coatings
,”
Mater. Sci. Technol.
,
34
(
17
), pp.
2057
2077
.
17.
Yeom
,
H.
,
Dabney
,
T.
,
Pocquette
,
N.
,
Ross
,
K.
,
Pfefferkorn
,
F. E.
, and
Sridharan
,
K.
,
2020
, “
Cold Spray Deposition of 304L Stainless Steel to Mitigate Chloride-Induced Stress Corrosion Cracking in Canisters for Used Nuclear Fuel Storage
,”
J. Nucl. Mater.
,
538
, p.
152254
.
18.
Wathanyu
,
K.
,
Tuchinda
,
K.
,
Daopiset
,
S.
,
Sirivisoot
,
S.
,
Kondas
,
J.
, and
Bauer
,
C.
,
2022
, “
Study of the Properties of Titanium Porous Coating With Different Porosity Gradients on 316L Stainless Steel by a Cold Spray Process
,”
J. Therm. Spray Technol.
,
31
(
3
), pp.
545
558
.
19.
Perez-Andrade
,
L. I.
,
Bhattiprolu
,
V. S.
,
Schuette
,
W. M.
, and
Brewer
,
L. N.
,
2022
, “
Influence of Powder Properties and Processing Gas on the Microstructural Evolution of Armstrong CP-Titanium and Ti6Al4V Powders Processed by Cold Spray
,”
Surf. Coat. Technol.
,
431
, p.
128011
.
20.
Khalik
,
M. A.
,
Zahiri
,
S. H.
,
Palanisamy
,
S.
,
Masood
,
S. H.
,
Gulizia
,
S.
, and
Faizan-Ur-Rab
,
M.
,
2022
, “
Rapid Elimination of Porosity and Brittleness in Cold Spray Additive Manufactured Grade 2 Titanium via In Situ Electro-Plastic Treatment
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1
), pp.
773
788
.
21.
Tang
,
J.
,
Tariq
,
N. H.
,
Zhao
,
Z.
,
Guo
,
M.
,
Liu
,
H.
,
Ren
,
Y.
,
Cui
,
X.
,
Shen
,
Y.
,
Wang
,
J.
, and
Xiong
,
T.
,
2022
, “
Microstructure and Mechanical Properties of Ti–Ta Composites Prepared Through Cold Spray Additive Manufacturing
,”
Acta Metall. Sin. (Engl. Lett.)
,
35
(
9
), pp.
1465
1476
.
22.
Huang
,
C.
,
List
,
A.
,
Shen
,
J.
,
Fu
,
B.
,
Yin
,
S.
,
Chen
,
T.
,
Klusemann
,
B.
,
Gärtner
,
F.
, and
Klassen
,
T.
,
2022
, “
Tailoring Powder Strengths for Enhanced Quality of Cold Sprayed Al6061 Deposits
,”
Mater. Des.
,
215
, p.
110494
.
23.
Wood
,
R. J. K.
, and
Wharton
,
J. A.
,
2011
, “11—Coatings for Tribocorrosion Protection,”
Tribocorrosion of Passive Metals and Coatings
,
D.
Landolt
, and
S.
Mischler
, eds.,
Woodhead Publishing
,
Sawston, United Kingdom
, pp.
296
333
.
24.
Ralls
,
A. M.
, and
Menezes
,
P. L.
,
2023
, “
Understanding the Tribo-Corrosion Mechanisms of Friction Stir Processed Steel Deposited by High-Pressure Deposition Additive Manufacturing Process
,”
Int. J. Adv. Manuf. Technol.
,
128
(
1–2
), pp.
823
843
.
25.
Sun
,
W.
,
Maharjan
,
N.
,
Wu
,
K.
,
Tan
,
A. W.-Y.
,
Huang
,
R.
,
Xie
,
Y.
,
Lan
,
H.
,
Chu
,
X.
, and
Liu
,
E.
,
2022
, “Modification of Cold Sprayed CoCrMo Alloy Coatings via Laser Shock Peening,”
Proceedings of the 2nd International Conference on Advanced Surface Enhancement (INCASE 2021)
,
Y.
Wei
, and
S.
Chng
, eds.,
Springer
,
Singapore
, pp.
185
188
.
26.
Delloro
,
F.
,
Zagouri
,
D.
,
Boustie
,
M.
, and
Jeandin
,
M.
,
2018
, “
A Laser Shock Approach to Cold Spray
,”
Mater. Sci. Forum
,
941
, pp.
1833
1840
.
27.
Ralls
,
A.
,
Mao
,
B.
, and
Menezes
,
P.
,
2023
, “
Tribological Performance of Laser Shock Peened Cold Spray Additive Manufactured 316L Stainless Steel
,”
ASME J. Tribol.
,
145
(
7
), p.
071702
.
28.
Peyre
,
P.
,
Fabbro
,
R.
,
Berthe
,
L.
, and
Dubouchet
,
C.
,
1996
, “
Laser Shock Processing of Materials, Physical Processes Involved and Examples of Applications
,”
J. Laser Appl.
,
8
(
3
), pp.
135
141
.
29.
Li
,
Y.
,
Ren
,
Z.
,
Jia
,
X.
,
Yang
,
W.
,
Nassreddin
,
N.
,
Dong
,
Y.
,
Ye
,
C.
,
Fortunato
,
A.
, and
Zhao
,
X.
,
2021
, “
The Effects of the Confining Medium and Protective Layer During Femtosecond Laser Shock Peening
,”
Manuf. Lett.
,
27
, pp.
26
30
.
30.
John
,
M.
,
Kalvala
,
P. R.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2021
, “
Peening Techniques for Surface Modification: Processes, Properties, and Applications
,”
Materials
,
14
(
14
), p.
3841
.
31.
du Plessis
,
A.
,
Glaser
,
D.
,
Moller
,
H.
,
Mathe
,
N.
,
Tshabalala
,
L.
,
Mfusi
,
B.
, and
Mostert
,
R.
,
2019
, “
Pore Closure Effect of Laser Shock Peening of Additively Manufactured AlSi10Mg
,”
3D Print. Addit. Manuf.
,
6
(
5
), pp.
245
252
.
32.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Effect of Laser Shock Peening on the Wear–Corrosion Synergistic Behavior of an AZ31B Magnesium Alloy
,”
ASME J. Tribol.
,
142
(
4
), p.
041701
.
33.
Wang
,
W.
,
Kattoura
,
M.
,
Bovid
,
S.
,
Zhang
,
Z.
,
Lahrman
,
D.
, and
Cai
,
W.
,
2023
, “
Effects of Nanosecond Laser Shock Peening on Residual Stress, Corrosion and Tribocorrosion Behavior of WE43 Magnesium Alloys
,”
Wear
,
524–525
, p.
204866
.
34.
Shan
,
L.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
Q.
, and
Xue
,
Q.
,
2016
, “
Tribocorrosion Behaviors of PVD CrN Coated Stainless Steel in Seawater
,”
Wear
,
362–363
, pp.
97
104
.
35.
Du
,
C.
,
Bai
,
X.
, and
Yuan
,
C.
,
2021
, “
Fretting Tribocorrosion Behaviors of Marine Mooring Chain Steel 22MnCrNiMo in Artificial Seawater
,”
ASME J. Tribol.
,
143
(
7
), p.
071701
.
36.
Osthus
,
R.
, “
Cold Spray Applications to Prevent Corrosion in Seawater
,” VRC Metal Systems, May 20, 2020. https://vrcmetalsystems.com/cold-spray-prevent-seawater-corrosion/.
37.
Meeß
,
J.
,
Anasenzl
,
M.
,
Ossenbrink
,
R.
, and
Michailov
,
V.
,
2022
, “
Influence of Particle Velocities on Adhesion Strength of Cold Spray Inner Diameter Coatings
,”
J. Therm. Spray Technol.
,
31
(
7
), pp.
2025
2038
.
38.
Singh
,
S.
,
Raman
,
R. K. S.
,
Berndt
,
C. C.
, and
Singh
,
H.
,
2021
, “
Influence of Cold Spray Parameters on Bonding Mechanisms: A Review
,”
Metals
,
11
(
12
), p.
2016
.
39.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
40.
Lan
,
L.
,
Jin
,
X.
,
Gao
,
S.
,
He
,
B.
, and
Rong
,
Y.
,
2020
, “
Microstructural Evolution and Stress State Related to Mechanical Properties of Electron Beam Melted Ti-6Al-4V Alloy Modified by Laser Shock Peening
,”
J. Mater. Sci. Technol.
,
50
, pp.
153
161
.
41.
Regtien
,
P.
, and
Dertien
,
E.
,
2018
,
Sensors for Mechatronics (Second Edition)
,
Elsevier
,
Amsterdam, Netherlands
.
42.
Fedrizzi
,
L.
,
Rossi
,
S.
,
Cristel
,
R.
, and
Bonora
,
P. L.
,
2004
, “
Corrosion and Wear Behaviour of HVOF Cermet Coatings Used to Replace Hard Chromium
,”
Electrochim. Acta
,
49
(
17
), pp.
2803
2814
.
43.
Liu
,
Z.
,
Liu
,
E.
,
Du
,
S.
,
Zhang
,
J.
,
Wang
,
L.
,
Du
,
H.
, and
Cai
,
H.
,
2021
, “
Tribocorrosion Behavior of Typical Austenitic, Martensitic, and Ferritic Stainless Steels in 3.5% NaCl Solution
,”
J. Mater. Eng. Perform.
,
30
(
8
), pp.
6284
6296
.
44.
Sajid
,
H. U.
, and
Kiran
,
R.
,
2018
, “
Influence of Corrosion and Surface Roughness on Wettability of ASTM A36 Steels
,”
J. Constr. Steel Res.
,
144
, pp.
310
326
.
45.
Siddaiah
,
A.
,
Kumar
,
P.
,
Henderson
,
A.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2019
, “
Surface Energy and Tribology of Electrodeposited Ni and Ni–Graphene Coatings on Steel
,”
Lubricants
,
7
(
10
), p.
87
.
46.
D01 Committee
,
Jan. 25, 2022
,
Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement
,
ASTM International
,
West Conshohocken, PA
.
47.
G02 Committee
,
Nov. 23, 2022
,
Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear
,
ASTM International
,
West Conshohocken, PA
.
48.
B09 Committee
,
Oct. 13, 2020
,
Standard Test Methods for Evaluating the Corrosion Resistance of Stainless Steel Powder Metallurgy (PM) Parts/Specimens by Immersion in a Sodium Chloride Solution
,
ASTM International
,
West Conshohocken, PA
.
49.
Maher
,
M.
,
Iraola-Arregui
,
I.
,
Ben Youcef
,
H.
,
Rhouta
,
B.
, and
Trabadelo
,
V.
,
2022
, “
The Synergistic Effect of Wear-Corrosion in Stainless Steels: A Review
,”
Mater. Today: Proc.
,
51
, pp.
1975
1990
.
50.
B09 Committee
,
Oct. 13, 2020
,
Standard Guide for Determining Synergism Between Wear and Corrosion
,
ASTM International
,
West Conshohocken, PA
.
51.
Ranjbar
,
M.
,
Ghasemi
,
H. M.
, and
Abedini
,
M.
,
2015
, “
Effect of Impact Angle on the Erosion–Corrosion Behavior of AISI 420 Stainless Steel in 3.5 Wt% NaCl Solution
,”
ASME J. Tribol.
,
137
(
3
), p.
031604
.
52.
Siddaiah
,
A.
,
Ramachandran
,
R.
, and
Menezes
,
P.
,
2021
,
Tribocorrosion: Fundamentals, Methods, and Materials
,
Elsevier Science
,
Amsterdam, Netherlands
.
53.
Sun
,
W.
,
Huang
,
X.
,
Zhang
,
J.
,
Wang
,
B.
, and
Liu
,
X.
,
2023
, “
The Roles of Microstructural Anisotropy in Tribo-Corrosion Performance of One Certain Laser Cladding Fe-Based Alloy
,”
Friction
,
11
(
9
), pp.
1673
1689
.
54.
Williamson
,
G. K.
, and
Hall
,
W. H.
,
1953
, “
X-Ray Line Broadening From Filed Aluminium and Wolfram
,”
Acta Metall.
,
1
(
1
), pp.
22
31
.
55.
Samuel
,
A.
, and
Prabhu
,
K. N.
,
2022
, “
Residual Stress and Distortion During Quench Hardening of Steels: A Review
,”
J. Mater. Eng. Perform.
,
31
(
7
), pp.
5161
5188
.
56.
Samantaroy
,
P. K.
,
Girija
,
S.
,
Kaul
,
R.
, and
Kamachi Mudali
,
U.
,
2013
, “
Enhancement of Corrosion Resistance of Nickel Based Superalloys by Laser Surface Melting
,”
Surf. Eng.
,
29
(
7
), pp.
522
530
.
57.
Sun
,
Z.
,
Annergren
,
I.
,
Pan
,
D.
, and
Mai
,
T. A.
,
2003
, “
Effect of Laser Surface Remelting on the Corrosion Behavior of Commercially Pure Titanium Sheet
,”
Mater. Sci. Eng. A
,
345
(
1
), pp.
293
300
.
58.
Stendal
,
J.
,
Fergani
,
O.
,
Yamaguchi
,
H.
, and
Espallargas
,
N.
,
2018
, “
A Comparative Tribocorrosion Study of Additive Manufactured and Wrought 316L Stainless Steel in Simulated Body Fluids
,”
J. Bio Tribo Corros.
,
4
(
1
), p.
9
.
59.
Ralls
,
A. M.
,
Daroonparvar
,
M.
,
Kasar
,
A. K.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2022
, “
Influence of Friction Stir Processing on the Friction, Wear and Corrosion Mechanisms of Solid-State Additively Manufactured 316L Duplex Stainless Steel
,”
Tribol. Int.
,
178
, p.
108033
.
60.
Ralls
,
A. M.
,
Daroonparvar
,
M.
,
Sikdar
,
S.
,
Rahman
,
M. H.
,
Monwar
,
M.
,
Watson
,
K.
,
Kay
,
C. M.
, and
Menezes
,
P. L.
,
2022
, “
Tribological and Corrosion Behavior of High Pressure Cold Sprayed Duplex 316 L Stainless Steel
,”
Tribol. Int.
,
169
, p.
107471
.
61.
Sun
,
Y.
, and
Haruman
,
E.
,
2011
, “
Effect of Electrochemical Potential on Tribocorrosion Behavior of Low Temperature Plasma Carburized 316L Stainless Steel in 1M H2SO4 Solution
,”
Surf. Coat. Technol.
,
205
(
17
), pp.
4280
4290
.
62.
Shivaram
,
M. J.
,
Arya
,
S. B.
,
Nayak
,
J.
, and
Panigrahi
,
B. B.
,
2021
, “
Tribocorrosion Behaviour of Biomedical Porous Ti–20Nb–5Ag Alloy in Simulated Body Fluid
,”
J. Bio Tribo Corros.
,
7
(
2
), p.
59
.
63.
Zhang
,
Y.
,
Yin
,
X.-Y.
, and
Yan
,
F.-Y.
,
2016
, “
Tribocorrosion Behaviour of Type S31254 Steel in Seawater: Identification of Corrosion–Wear Components and Effect of Potential
,”
Mater. Chem. Phys.
,
179
, pp.
273
281
.
64.
Dai
,
Z.
,
Jiang
,
S.
,
Wu
,
B.
,
Ning
,
L.
,
Li
,
S.
, and
Duan
,
D.
,
2023
, “
Synergism Between Wear and Corrosion of Cr26Mo1 Ferrite Stainless Steels in 0.5 Mol/L of Sulfuric Acid
,”
Tribol. Int.
,
178
, p.
108007
.
65.
Alkan
,
S.
, and
Gök
,
M. S.
,
2021
, “
Effect of Sliding Wear and Electrochemical Potential on Tribocorrosion Behaviour of AISI 316 Stainless Steel in Seawater
,”
Eng. Sci. Technol. Int. J.
,
24
(
2
), pp.
524
532
.
66.
Zeng
,
Q.
, and
Xu
,
Y.
,
2020
, “
A Comparative Study on the Tribocorrosion Behaviors of AlFeCrNiMo High Entropy Alloy Coatings and 304 Stainless Steel
,”
Mater. Today Commun.
,
24
, p.
101261
.
67.
Fischer
,
A.
,
Telouk
,
P.
, and
Wimmer
,
M. A.
,
2023
, “
The Gross Slip Fretting Corrosion Mechanisms of Biomedical Ceramic-Metal Couples
,”
Biotribology
,
35–36
, p.
100252
.
68.
Çomaklı
,
O.
,
2021
, “
Improved Structural, Mechanical, Corrosion and Tribocorrosion Properties of Ti45Nb Alloys by TiN, TiAlN Monolayers, and TiAlN/TiN Multilayer Ceramic Films
,”
Ceram. Int.
,
47
(
3
), pp.
4149
4156
.
69.
Menezes
,
P. L.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
, “Fundamentals of Engineering Surfaces,”
Tribology for Scientists and Engineers: From Basics to Advanced Concepts
,
P. L.
Menezes
,
M.
Nosonovsky
,
S. P.
Ingole
,
S. V.
Kailas
, and
M. R.
Lovell
, eds.,
Springer New York
,
New York, NY
, pp.
3
41
.
70.
Ralston
,
K. D.
, and
Birbilis
,
N.
,
2010
, “
Effect of Grain Size on Corrosion: A Review
,”
Corrosion
,
66
(
7
), pp.
075005
075005–13
.
71.
Parakh
,
A.
,
Vaidya
,
M.
,
Kumar
,
N.
,
Chetty
,
R.
, and
Murty
,
B. S.
,
2021
, “
Effect of Crystal Structure and Grain Size on Corrosion Properties of AlCoCrFeNi High Entropy Alloy
,”
J. Alloys Compd.
,
863
, p.
158056
.
72.
Besharatloo
,
H.
,
Carpio
,
M.
,
Cabrera
,
J.-M.
,
Mateo
,
A. M.
,
Fargas
,
G.
,
Wheeler
,
J. M.
,
Roa
,
J. J.
, and
Llanes
,
L.
,
2020
, “
Novel Mechanical Characterization of Austenite and Ferrite Phases Within Duplex Stainless Steel
,”
Metals
,
10
(
10
), p.
1352
.
73.
Hall
,
A. C.
,
Williamson
,
R. L.
,
Hirschfeld
,
D. A.
, and
Roemer
,
T. J.
,
2006
, “
Mechanisms Resulting in Improved Ductility of Cold Spray Coatings After Annealing
,”
International Thermal Spray Conference Proceedings
,
Seattle, WA
,
May 15–18, 2006
, pp.
227
282
, Paper No. itsc2006p0277.
74.
Jing
,
Z.
, and
Dejun
,
K.
,
2018
, “
Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution
,”
Materials (Basel)
,
11
(
2
), p.
283
.
75.
Singh
,
J.
, and
Chauhan
,
A.
,
2016
, “
Overview of Wear Performance of Aluminium Matrix Composites Reinforced With Ceramic Materials Under the Influence of Controllable Variables
,”
Ceram. Int.
,
42
(
1, Part A
), pp.
56
81
.
76.
Siddaiah
,
A.
,
Mao
,
B.
,
Kasar
,
A. K.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Influence of Laser Shock Peening on the Surface Energy and Tribocorrosion Properties of an AZ31B Mg Alloy
,”
Wear
,
462–463
, p.
203490
.
77.
Li
,
X.
, and
Olofsson
,
U.
,
2017
, “
A Study on Friction and Wear Reduction Due to Porosity in Powder Metallurgic Gear Materials
,”
Tribol. Int.
,
110
, pp.
86
95
.
78.
Liang
,
D.
,
Zhou
,
Y.
,
Liu
,
X.
,
Zhou
,
Q.
,
Huang
,
B.
,
Zhang
,
E.
,
Chen
,
Q.
, and
Shen
,
J.
,
2022
, “
Wettability and Corrosion Performance of Arc-Sprayed Fe-Based Amorphous Coatings
,”
Surf. Coat. Technol.
,
433
, p.
128129
.
79.
Liu
,
X.
,
Zhao
,
X.
,
An
,
Y.
,
Hou
,
G.
,
Li
,
S.
,
Deng
,
W.
,
Zhou
,
H.
, and
Chen
,
J.
,
2018
, “
Effects of Loads on Corrosion-Wear Synergism of NiCoCrAlYTa Coating in Artificial Seawater
,”
Tribol. Int.
,
118
, pp.
421
431
.
You do not currently have access to this content.