Abstract

This investigation presents the deterministic and stochastic responses of the journal bearing with a two-layered porous bush. Pressure equations in the porous layers and modified Reynolds equations in the clearance region are governed by the finite difference method (FDM). Stochastic analysis based on Monte Carlo simulation (MCS) is used to investigate the effect of random variation in input parameters caused by uncertain operating conditions, improper installations, and manufacturing imperfections. In order to enhance computational efficiency, this probabilistic study is conducted in conjunction with the machine learning (ML) model based on the support vector machine (SVM) algorithm. The uncertainty in the bearing responses is presented in the form of the probability density function (PDF), considering both the independent and combined effect of the stochastically varied input parameters. Graphical illustration of the data-driven sensitivity represents the relative significance of each input parameter affecting the steady-state responses of the journal bearing with two-layered porous bush. The findings of the present study reveal that the stochastic variations in the input parameters have a profound influence on the operational characteristics of the porous bearing. The outcome of the present study will be helpful in deciding the operational regime of the porous bearing under the practically relevant stochastic environment.

References

1.
Baidya
,
U.
,
Das
,
S.
, and
Das
,
S.
,
2020
, “
Analysis of Misaligned Hydrodynamic Porous Journal Bearings in the Steady-State Condition With Micropolar Lubricant
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
234
(
5
), pp.
778
792
.
2.
Naduvinamani
,
N.
, and
Marali
,
G. B.
,
2008
, “
Dynamic Reynolds Equation for Micropolar Fluid Lubrication of Porous Slider Bearings
,”
J. Marine Sci. Technol.
,
16
(
3
), p.
3
.
3.
Meurisse
,
M.-H.
,
2013
, “
Porous Metal Journal Bearings
,”
Encyclopedia of Tribology
,
Q. J.
Wang
and
Y. W.
Chung
, eds., vol. 1, pp.
2669
2673
.
4.
Saha
,
N.
, and
Majumdar
,
B. C.
,
2002
, “
Study of Externally-Pressurized Gas-Lubricated Two-Layered Porous Journal Bearings: a Steady State Analysis
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
216
(
3
), pp.
151
158
.
5.
Schimpf
,
A.
,
Ortelt
,
M.
,
Seiler
,
H.
,
Gu
,
Y.
,
Schwarzwälder
,
A.
, and
Böhle
,
M.
,
2022
, “
Experimental Investigation of Aerostatic Journal Bearings Made of Carbon Fiber-Reinforced Carbon Composites
,”
ASME J. Tribol.
,
144
(
4
), p.
041806
.
6.
Morgan
,
V. T.
, and
Cameron
,
A.
,
1957
, “
Mechanism of Lubrication in Porous Metal Bearings
,”
Proceedings Conference on Lubrication and Wear
,
Inst. Mech. Eng London
,
October
.
7.
Sommerfeld
,
A.
,
1914
, “
ZurTheorie DerSchmiermittelreibung
,”
ArchivfürElektrotechnik
,
3
(
1
), pp.
1
5
.
8.
Harrison
,
W. J.
,
1913
,
The Hydrodynamical Theory of Lubrication With Special Reference to Air as a Lubricant
,
University Press
,
Pennsylvania State University
.
9.
D'Agostino
,
V.
,
Ruggiero
,
A.
, and
Senatore
,
A.
,
2006
, “
Approximate Model for Unsteady Finite Porous Journal Bearings Fluid Film Force Calculation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
220
(
3
), pp.
227
234
.
10.
Chattopadhyay
,
A. K.
, and
Majumdar
,
B. C.
,
1984
, “
Steady State Solution of Finite Hydrostatic Porous Oil Journal Bearings With Tangential Velocity Slip
,”
Tribol. Int.
,
17
(
6
), pp.
317
323
.
11.
Chattopadhyay
,
A. K.
, and
Majumdar
,
B. C.
,
1984
, “
Dynamic Characteristics of Finite Porous Journal Bearings Considering Tangential Velocity Slip
,”
ASME J. Tribol.
,
106
(
4
), pp.
534
536
.
12.
Bhattacharjee
,
B.
,
Biswas
,
N.
,
Chakraborti
,
P.
, and
Choudhuri
,
K.
,
2022
, “
A Comparative Analysis of the Performance of Single-Layered and Double-Layered Porous Journal Bearings Lubricated With Micropolar Fluid
,”
J. Porous Media
,
25
(
7
), pp.
35
45
.
13.
Saha
,
N.
, and
Majumdar
,
B. C.
,
2003
, “
Stability of Oil-Lubricated Externally Pressurized Two-Layered Porous Journal Bearings: A Non-Linear Transient Analysis
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
217
(
3
), pp.
223
228
.
14.
Saha
,
N.
, and
Majumdar
,
B. C.
,
2004
, “
Steady-State and Stability Characteristics of Hydrostatic Two-Layered Porous Oil Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
218
(
2
), pp.
99
108
.
15.
Bhattacharjee
,
B.
,
Chakraborti
,
P.
, and
Choudhuri
,
D.
,
2018
, “
Influence of the Gas Lubrication on Double Layered Porous Journal Bearing
,”
TRIBOINDIA-2018, an International Conference on Tribology
,
VJTI, Mumbai, India
,
Dec. 13–15
.
16.
Bhattacharjee
,
B.
,
Chakraborti
,
P.
, and
Choudhuri
,
K.
,
2020
, “
Theoretical Investigation of Porous Hydrostatic Journal Bearing Under Micropolar Fluid Lubrication
,”
Proc. Inst. Mech. Eng., Part N: J. Nanomater., Nanoeng. Nanosyst.
,
234
(
1–2
), pp.
11
18
.
17.
Rao
,
T. V. V. L. N.
,
Rani
,
A. M. A.
,
Nagarajan
,
T.
, and
Hashim
,
F. M.
,
2013
, “
Analysis of Journal Bearing With Double-Layer Porous Lubricant Film: Influence of Surface Porous Layer Configuration
,”
Tribol. Trans.
,
56
(
5
), pp.
841
847
.
18.
Lahmar
,
M.
,
2005
, “
Elastohydrodynamic Analysis of Double-Layered Journal Bearings Lubricated With Couple-Stress Fluids
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
219
(
2
), pp.
145
165
.
19.
Some
,
S.
, and
Guha
,
S. K.
,
2019
, “
Effect of Journal Misalignment and Coupled-Stress Lubricant on the Film Pressure of a Double-Layered Porous Journal Bearing
,”
Indus. Lubr. Trib.
,
72
(
3
), pp.
315
323
.
20.
Kumar
,
M. P.
,
Samanta
,
P.
, and
Murmu
,
N. C.
,
2015
, “
Investigation of Velocity Slip Effect on Steady State Characteristics of Finite Hydrostatic Double-Layered Porous Oil Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
229
(
7
), pp.
773
784
.
21.
Mallisetty
,
P. K.
,
Samanta
,
P.
, and
Murmu
,
N. C.
,
2020
, “
Nonlinear Transient Analysis of Rigid Rotor Mounted on Externally Pressurized Double-Layered Porous Gas Journal Bearings Accounting Velocity Slip
,”
J. Brazil. Soc. Mech. Sci. Eng.
,
42
(
10
), pp.
1
12
.
22.
Taylor
,
C. M.
, and
Dowson
,
D.
,
1974
, “
Turbulent Lubrication Theory—Application to Design
,”
ASME. J. Lubr. Tech.
,
96
(
1
), pp.
36
46
.
23.
Hashimoto
,
H.
,
Wada
,
S.
, and
Ito
,
J.-i.
,
1987
, “
An Application of Short Bearing Theory to Dynamic Characteristic Problems of Turbulent Journal Bearings
,”
ASME. J. Tribol.
,
109
(
2
), pp.
307
314
.
24.
Zhang
,
C.
,
Yi
,
Z.
, and
Zhang
,
Z.
,
2000
, “
THD Analysis of High Speed Heavily Loaded Journal Bearings Including Thermal Deformation, Mass Conserving Cavitation, and Turbulent Effects
,”
ASME J. Tribol.
,
122
(
3
), pp.
597
602
.
25.
Miraskari
,
M.
,
Hemmati
,
F.
,
Alqaradawi
,
M. Y.
, and
Gadala
,
M. S.
,
2017
, “
Linear Stability Analysis of Finite Length Journal Bearings in Laminar and Turbulent Regimes
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
10
), pp.
1254
1267
.
26.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
, and
Zhu
,
G.
,
2020
, “
Research on Turbulent Lubrication of Misaligned Journal Bearing Considering the Axial Motion of Journal
,”
ASME J. Tribol.
,
142
(
2
), p.
021802
.
27.
Mallya
,
R.
,
Shenoy
,
S. B.
, and
Pai
,
R.
,
2017
, “
Static Characteristics of Misaligned Multiple Axial Groove Water-Lubricated Bearing in the Turbulent Regime
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
3
), pp.
385
398
.
28.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
29.
Kumar
,
A.
,
1998
, “
Conical Whirl Instability of Turbulent Flow Hybrid Porous Journal Bearings
,”
Tribol. Int.
,
31
(
5
), pp.
235
243
.
30.
Constantinescu
,
V. N.
,
1959
, “
On Turbulent Lubrication
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
881
900
.
31.
Kumar
,
A.
, and
Rao
,
N. S.
,
1993
, “
Steady State Performance of Finite Hydrodynamic Porous Journal Bearings in Turbulent Regimes
,”
Wear
,
167
(
2
), pp.
121
126
.
32.
Kumar
,
A.
, and
Rao
,
N. S.
,
1994
, “
Stability of a Rigid Rotor in Turbulent Hybrid Porous Journal Bearings
,”
Tribol. Int.
,
27
(
5
), pp.
299
305
.
33.
Kumar
,
V.
,
1981
, “
Hydrodynamic Load Capacity of a Full Porous Journal Bearing of Finite Length in the Turbulent Regime Considering Slip Flow and Curvature
,”
Wear
,
67
(
2
), pp.
167
176
.
34.
Singh
,
A.
, and
Sharma
,
S. C.
,
2021
, “
Influence of Geometric Imperfection of Journal on the Performance of Porous Hybrid Journal Bearing Under Turbulent Condition
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
9
), pp.
1879
1896
.
35.
Da Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
.
36.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2006
, “
Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing—Comparison Between Deterministic and Stochastic Models
,”
ASME J. Tribol.
,
128
(
4
), pp.
778
788
.
37.
Alves
,
D.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.
38.
Datz
,
J.
,
Karimi
,
M.
, and
Marburg
,
S.
,
2021
, “
Effect of Uncertainty in the Balancing Weights on the Vibration Response of a High-Speed Rotor
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061002
.
39.
Fu
,
C.
,
Zhu
,
W.
,
Ma
,
J.
, and
Gu
,
F.
,
2022
, “
Static and Dynamic Characteristics of Journal Bearings Under Uncertainty: A Nonprobabilistic Perspective
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071012
.
40.
Lin
,
J.-R.
,
Hung
,
T.-C.
,
Chou
,
T.-L.
, and
Liang
,
L.-J.
,
2013
, “
Effects of Surface Roughness and Non-Newtonian Micropolar Fluids on Dynamic Characteristics of Wide Plane Slider Bearings
,”
Tribol. Int.
,
66
, pp.
150
156
.
41.
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2021
, “
Effect of Eccentricity and Surface Roughness on Probabilistic Performance of Two Axial Groove Bearing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101013
.
42.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
, and
Zhu
,
G.
,
2019
, “
Stochastic Models for Turbulent Lubrication of Bearing With Rough Surfaces
,”
Tribol. Int.
,
136
, pp.
224
233
.
43.
Maharshi
,
K.
,
Mukhopadhyay
,
T.
,
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2018
, “
Stochastic Dynamic Behaviour of Hydrodynamic Journal Bearings Including the Effect of Surface Roughness
,”
Int. J. Mech. Sci.
,
142–143
, pp.
370
383
.
44.
Gupta
,
K. K.
,
Mukhopadhyay
,
T.
,
Roy
,
A.
,
Roy
,
L.
, and
Dey
,
S.
,
2021
, “
Sparse Machine Learning Assisted Deep Computational Insights on the Mechanical Properties of Graphene With Intrinsic Defects and Doping
,”
J. Phys. Chem. Solids
,
155
, p.
110111
.
45.
Gururajan
,
K.
, and
Prakash
,
J.
,
2000
, “
Effect of Surface Roughness in a Narrow Porous Journal Bearing
,”
ASME J. Tribol.
,
122
(
2
), pp.
472
475
.
46.
Gupta
,
K. K.
,
Roy
,
L.
, and
Dey
,
S.
,
2022
, “
Hybrid Machine-Learning-Assisted Stochastic Nano-Indentation Behaviour of Twisted Bilayer Graphene
,”
J. Phys. Chem. Solids
,
167
, p.
110711
.
47.
Saha
,
S.
,
Gupta
,
K. K.
,
Maity
,
S. R.
, and
Dey
,
S.
,
2022
, “
Data-Driven Probabilistic Performance of Wire EDM: A Machine Learning Based Approach
,”
Proc. Inst. Mech. Eng. B
,
236
(
6–7
), pp.
908
919
.
48.
Gupta
,
K. K.
,
Roy
,
A.
,
Mukhopadhyay
,
T.
,
Roy
,
L.
, and
Dey
,
S.
,
2022
, “
Probing the Stochastic Fracture Behavior of Twisted Bilayer Graphene: Efficient ANN Based Molecular Dynamics Simulations for Complete Probabilistic Characterization
,”
Mater. Today Commun.
,
32
, p.
103932
.
49.
Kushari
,
S.
,
Kumar
,
R. R.
,
Karsh
,
P. K.
, and
Dey
,
S.
,
2022
, “
Sensitivity Analysis of Random Frequency Responses of Hybrid Multi-Functionally Graded Sandwich Shells
,”
J. Vib. Eng. Technol.
,
11
, pp.
1
28
.
50.
Mukhopadhyay
,
T.
,
Naskar
,
S.
,
Gupta
,
K. K.
,
Kumar
,
R.
,
Dey
,
S.
, and
Adhikari
,
S.
,
2021
, “
Probing the Stochastic Dynamics of Coronaviruses: Machine Learning Assisted Deep Computational Insights With Exploitable Dimensions
,”
Adv. Theory Simul.
,
4
(
7
), p.
2000291
.
51.
Ma
,
J.
,
Fu
,
C.
,
Zhu
,
W.
,
Lu
,
K.
, and
Yang
,
Y.
,
2022
, “
Stochastic Analysis of Lubrication in Misaligned Journal Bearings
,”
ASME J. Tribol.
,
144
(
8
), p.
081802
.
52.
Roy
,
B.
,
Mukhopadhyay
,
T.
, and
Dey
,
S.
,
2022
, “
Polynomial Neural Network Based Probabilistic Hydrodynamic Analysis of Two-Lobe Bearings With Stochasticity in Surface Roughness
,”
Tribol. Int.
,
174
, p.
107733
.
53.
Floberg
,
L.
,
1961
, “
Boundary Conditions of Cavitation Regions in Journal Bearings
,”
ASLE Trans.
,
4
(
2
), pp.
282
286
.
54.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1965
, “
On the Determination of Friction Forces in Turbulent Lubrication
,”
ASLE Trans.
,
8
(
4
), pp.
367
380
.
55.
Guha
,
S. K.
, and
Chattopadhyay
,
A. K.
,
2007
, “
On the Linear Stability Analysis of Finite-Hydrodynamic Porous Journal Bearings Under Coupled Stress Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
(
7
), pp.
831
840
.
56.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
(
1
), pp.
197
207
.
57.
Murti
,
P. R. K.
,
1973
, “
Lubrication of Finite Porous Journal Bearings
,”
Wear
,
26
(
1
), pp.
95
104
.
58.
Elsharkawy
,
A. A.
, and
Nassar
,
M. M.
,
1996
, “
Hydrodynamic Lubrication of Squeeze-Film Porous Bearings
,”
Acta Mech.
,
118
(
1
), pp.
121
134
.
59.
Su
,
J. C.
,
You
,
H.
, and
Lai
,
J.
,
2003
, “
Numerical Analysis on Externally Pressurized High-Speed Gas-Lubricated Porous Journal Bearings
,”
Indus. Lubr. Trib.
,
55
(
5
), pp.
244
250
.
60.
Piekos
,
E. S.
,
2000
, “
Numerical Simulation of Gas-Lubricated Journal Bearings for Microfabricated Machines
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
You do not currently have access to this content.