Abstract

This study aims to correlate the abrasive wear performance with mechanical properties, considering AA6063 Al–Mg–Si alloy as the model material. The selected alloy specimens are subjected to artificial ageing at 150 °C for an ageing duration ranging from 1 to 672 h, covering severely under-aged (SUA) to peak-aged (PA) to severely over-aged (SOA) states. Apart from the hardness and tensile properties, two-body abrasive wear properties are also evaluated for differently aged alloys in terms of wear-rate, coefficient of friction, and roughness of the abraded surfaces. Furthermore, the generated wear debris, surface, and subsurface of the abraded specimens are critically examined to reveal the micro-mechanisms of abrasion. The lowest amount of wear-rate is observed for a PA alloy with maximum hardness, while the OA alloy exhibits a slightly lower wear-rate than the UA alloy at a similar level of hardness. Statistical analyses of wear-rate and various mechanical properties of all heat-treated alloys establish a strong negative linear correlation between the wear-rate and hardness, yield strength, tensile strength, and strength coefficient, whereas a positive linear correlation with the strain hardening exponent. Relationships between wear-rate and different roughness parameters are also discussed. Under the investigated wear condition, the aged alloys endure significant plastic deformation; micro-plowing, micro-cutting, and delamination are found to be the predominant mechanisms during abrasion.

References

1.
Langille
,
M.
,
Diak
,
B. J.
,
De Geuser
,
F.
,
Guiglionda
,
G.
,
Meddeb
,
S.
,
Zhao
,
H.
,
Gault
,
B.
,
Raabe
,
D.
, and
Deschamps
,
A.
,
2019
, “Understanding the Role of Cu and Clustering on Strain Hardening and Strain Rate Sensitivity of Al-Mg-Si-Cu Alloys,”
Light Metals
,
C.
Chesonis
, ed.,
Springer
,
Cham
, pp.
143
151
.
2.
Tisza
,
M.
, and
Czinege
,
I.
,
2018
, “
Comparative Study of the Application of Steels and Aluminium in Lightweight Production of Automotive Parts
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
4
), pp.
229
238
.
3.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
4.
Panigrahi
,
S. K.
, and
Jayaganthan
,
R.
,
2011
, “
Development of Ultrafine-Grained Al 6063 Alloy by Cryorolling With the Optimized Initial Heat Treatment Conditions
,”
Mater. Des.
,
32
(
4
), pp.
2172
2180
.
5.
Burger
,
G. B.
,
Gupta
,
A. K.
,
Jeffrey
,
P. W.
, and
Lloyd
,
D. J.
,
1995
, “
Microstructural Control of Aluminum Sheet Used in Automotive Applications
,”
Mater. Charact.
,
35
(
1
), pp.
23
39
.
6.
Sekhar
,
A. P.
,
Nandy
,
S.
,
Ray
,
K. K.
, and
Das
,
D.
,
2016
, “Comparative Assessment of Strength Models for AA6063 Alloy,”
Materials Science Forum
,
M. H.
Abdul Shukor
and
H.
Gong
, eds.,
Trans Tech Publications
,
Switzerland
, pp.
83
89
.
7.
Sato
,
Y. S.
,
Kokawa
,
H.
,
Enomoto
,
M.
, and
Jogan
,
S.
,
1999
, “
Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding
,”
Metall. Mater. Trans. A
,
30
(
9
), pp.
2429
2437
.
8.
Vishwakarma
,
D. K.
,
Kumar
,
N.
, and
Padap
,
A. K.
,
2017
, “
Modelling and Optimization of Aging Parameters for Thermal Properties of Al 6082 Alloy Using Response Surface Methodology
,”
Mater. Res. Express
,
4
(
4
), p.
046502
.
9.
Heinz
,
A.
,
Haszler
,
A.
,
Keidel
,
C.
,
Moldenhauer
,
S.
,
Benedictus
,
R.
, and
Miller
,
W. S.
,
2000
, “
Recent Development in Aluminium Alloys for Aerospace Applications
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
102
107
.
10.
Ringer
,
S. P.
, and
Hono
,
K.
,
2000
, “
Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies
,”
Mater. Charact.
,
44
(
1–2
), pp.
101
131
.
11.
Dumitraschkewitz
,
P.
,
Gerstl
,
S. S. A.
,
Stephenson
,
L. T.
,
Uggowitzer
,
P. J.
, and
Pogatscher
,
S.
,
2018
, “
Clustering in Age-Hardenable Aluminum Alloys
,”
Adv. Eng. Mater.
,
20
(
10
), p.
1800255
.
12.
Nandy
,
S.
,
Kumar Ray
,
K.
, and
Das
,
D.
,
2015
, “
Process Model to Predict Yield Strength of AA6063 Alloy
,”
Mater. Sci. Eng. A
,
644
, pp.
413
424
.
13.
Blau
,
P. J.
,
1997
, “
Fifty Years of Research on the Wear of Metals
,”
Tribol. Int.
,
30
(
5
), pp.
321
331
.
14.
Barwell
,
F. T.
,
1958
, “
Wear of Metals
,”
Wear
,
1
(
4
), pp.
317
332
.
15.
Gavgali
,
M.
,
Totik
,
Y.
, and
Sadeler
,
R.
,
2003
, “
The Effects of Artificial Aging on Wear Properties of AA 6063 Alloy
,”
Mater. Lett.
,
57
(
24–25
), pp.
3713
3721
.
16.
Meriç
,
C.
,
Atík
,
E.
, and
Kaçar
,
H.
,
2006
, “
Effect of Aging on the Abrasive Wear Properties of AlMgSi1 Alloy
,”
Mater. Des.
,
27
(
10
), pp.
1180
1186
.
17.
Sharma
,
R.
,
Anesh
, and
Dwivedi
,
D. K.
,
2005
, “
Influence of Silicon (Wt%) and Heat Treatment on Abrasive Wear Behaviour of Cast Al-Si-Mg Alloys
,”
Mater. Sci. Eng. A
,
408
(
1–2
), pp.
274
280
.
18.
Büyükdoǧan
,
S.
,
Gündüz
,
S.
, and
Türkmen
,
M.
,
2014
, “
Influence of Ageing Treatment on Microstructure, Mechanical Properties and Adhesive Wear Behaviour of 6063 Aluminium Alloy
,”
Ind. Lubr. Tribol.
,
66
(
4
), pp.
520
524
.
19.
Mahajan
,
Y.
, and
Peshwe
,
D. R.
,
2018
, “
Effect of Temper Conditions on Abrasive Wear Behavior of AA7010 Alloy
,”
Trans. Indian Inst. Met.
,
71
(
4
), pp.
1025
1032
.
20.
Sekhar
,
A. P.
, and
Das
,
D.
,
2021
, “
Influence of Artificial Aging on Mechanical Properties and High Stress Abrasive Wear Behaviour of Al–Mg–Si Alloy
,”
Met. Mater. Int.
,
27
(
2
), pp.
337
351
.
21.
Kaçar
,
H. U.
,
Atik
,
E.
, and
Meriç
,
C.
,
2003
, “
The Effect of Precipitation-Hardening Conditions on Wear Behaviours at 2024 Aluminium Wrought Alloy
,”
J. Mater. Process. Technol.
,
142
(
3
), pp.
762
766
.
22.
Hutchings
,
I. M.
,
2002
, “
Abrasion Processes in Wear and Manufacturing
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
216
(
2
), pp.
55
62
.
23.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
The Effect of Wear Parameters and Heat Treatment on Two Body Abrasive Wear of Al-SiC-Gr Hybrid Composites
,”
Tribol. Int.
,
96
, pp.
184
190
.
24.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
Effect of Grit Size on Two Body Abrasive Wear of Al 6082 Hybrid Composites Produced by Stir Casting Method
,”
Tribol. Int.
,
102
, pp.
52
60
.
25.
Baldoni
,
J. G.
,
Wayne
,
S. F.
, and
Buljian
,
S. T.
,
1986
, “
Cutting Tool Materials : Mechanical Properties—Wear- Resistance Relationships
,”
ASLE Trans.
,
29
(
3
), pp.
347
352
.
26.
Jha
,
A. K.
,
Prasad
,
B. K.
,
Modi
,
O. P.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2003
, “
Correlating Microstructural Features and Mechanical Properties With Abrasion Resistance of a High Strength Low Alloy Steel
,”
Wear
,
254
(
1–2
), pp.
120
128
.
27.
Das
,
S.
,
Mondal
,
D. P.
, and
Dixit
,
G.
,
2001
, “
Correlation of Abrasive Wear with Microstructure and Mechanical Properties of Pressure Die-Cast Aluminum Hard-Particle Composite
,”
Metall. Mater. Trans. A
,
32
(
3
), pp.
633
642
.
28.
2016
, Standard Test Method for Tension Testing of Metallic Materials, West Conshohocken.
29.
ASTM G99-00
,
2005
, “
Standard Test Method for Wear Testing with a Pin-on-Disc Apparatus, West Conshohocken, PA
,”
ASTM International
.
30.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Abrasive Wear of Al Alloy-Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1–2
), pp.
131
138
.
31.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al 2 O 3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
32.
Gadelmawla
,
E. S.
,
Koura
,
M. M.
,
Maksoud
,
T. M. A.
,
Elewa
,
I. M.
, and
Soliman
,
H.
,
2002
, “
Roughness Parameters
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
133
147
.
33.
Rendón
,
J.
, and
Olsson
,
M.
,
2009
, “
Abrasive Wear Resistance of Some Commercial Abrasion Resistant Steels Evaluated by Laboratory Test Methods
,”
Wear
,
267
(
11
), pp.
2055
2061
.
34.
Guo
,
M. X.
,
Li
,
G. J.
,
Sha
,
G.
,
Zhang
,
J. S.
,
Zhuang
,
L. Z.
, and
Lavernia
,
E. J.
,
2019
, “
Influence of Zn on the Distribution and Composition of Heterogenous Solute-Rich Features in Peak-Aged Al-Mg-Si-Cu Alloys
,”
Scr. Mater.
,
159
, pp.
5
8
.
35.
Liu
,
H.
,
Zhao
,
G.
,
Liu
,
C.-M
, and
Zuo
,
L.
,
2007
, “
Effects of Different Tempers on Precipitation Hardening of 6000 Series Aluminium Alloys
,”
Trans. Nonferrous Met. Soc. China
,
17
(
1
), pp.
122
127
.
36.
Siddiqui
,
R. A.
,
Abdullah
,
H. A.
, and
Al-Belushi
,
K. R.
,
2000
, “
Influence of Aging Parameters on the Mechanical Properties of 6063 Aluminium Alloy
,”
J. Mater. Process. Technol.
,
102
(
1
), pp.
234
240
.
37.
Panigrahi
,
S. K.
, and
Jayaganthan
,
R.
,
2008
, “
A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy
,”
Mater. Sci. Eng. A
,
480
(
1–2
), pp.
299
305
.
38.
Jin
,
S.
,
Ngai
,
T.
,
Li
,
L.
,
Jia
,
S.
,
Zhai
,
T.
, and
Ke
,
D.
,
2018
, “
Aging Response and Precipitation Behavior After 5% Pre-deformation of an Al-Mg-Si-Cu Alloy
,”
Materials (Basel)
,
11
(
8
), pp.
1422
.
39.
Cavazos
,
J. L.
, and
Colás
,
R.
,
2003
, “
Quench Sensitivity of a Heat Treatable Aluminum Alloy
,”
Mater. Sci. Eng. A
,
363
(
1–2
), pp.
171
178
.
40.
Jiang
,
D. M.
,
Hong
,
B. D.
,
Lei
,
T. C.
,
Downham
,
D. A.
, and
Lorimer
,
G. W.
,
1991
, “
Influence of Aging Condition on Tensile and Fatigue Fracture Behaviour of Aluminium Alloy 6063
,”
Mater. Sci. Technol.
,
7
(
11
), pp.
1010
1014
.
41.
Zhang
,
D. L.
, and
Zheng
,
L.
,
1996
, “
The Quench Sensitivity of Cast Al-7 Wt Pet Si-0.4 Wt Pct Mg Alloy
,”
Metall. Mater. Trans. A
,
27
(
12
), pp.
3983
3991
.
42.
Nandy
,
S.
,
Bakkar
,
M. A.
, and
Das
,
D.
,
2015
, “
Influence of Ageing on Mechanical Properties of 6063 Al Alloy
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
1234
1242
.
43.
Zhen
,
L.
,
Fei
,
W. D.
,
Kang
,
S. B.
, and
Kim
,
H. W.
,
1997
, “
Precipitation Behaviour of Al-Mg-Si Alloys With High Silicon Content
,”
J. Mater. Sci.
,
32
(
7
), pp.
1895
1902
.
44.
Demir
,
H.
, and
Gündüz
,
S.
,
2009
, “
The Effects of Aging on Machinability of 6061 Aluminium Alloy
,”
Mater. Des.
,
30
(
5
), pp.
1480
1483
.
45.
Gupta
,
A. K.
, and
Prasad
,
B. K.
,
2013
, “
Effects of Microstructural Features and Test Parameters on the Abrasive Wear Response of an Al-Si Alloy
,”
J. Mater. Eng. Perform.
,
22
(
7
), pp.
2089
2097
.
46.
Edwards
,
G. A.
,
Stiller
,
K.
,
Dunlop
,
G. L.
, and
Couper
,
M. J.
,
1998
, “
The Precipitation Sequence in Al-Mg-Si Alloys
,”
Acta Mater.
,
46
(
11
), pp.
3893
3904
.
47.
Gupta
,
A. K.
,
Lloyd
,
D. J.
, and
Court
,
S. A.
,
2001
, “
Precipitation Hardening Processes in an Al–0.4%Mg–1.3%Si–0.25%Fe Aluminum Alloy
,”
Mater. Sci. Eng. A
,
301
(
2
), pp.
140
146
.
48.
Vissers
,
R.
,
van Huis
,
M. A.
,
Jansen
,
J.
,
Zandbergen
,
H. W.
,
Marioara
,
C. D.
, and
Andersen
,
S. J.
,
2007
, “
The Crystal Structure of the Β′ Phase in Al-Mg-Si Alloys
,”
Acta Mater.
,
55
(
11
), pp.
3815
3823
.
49.
Marioara
,
C. D.
,
Andersen
,
S. J.
,
Friss
,
J.
,
Engler
,
O.
, and
Aruga
,
Y.
,
2018
, “
The Nature of Solute Clusters and GP-Zones in the Al-Mg-Si System
,”
The Proceedings of 16th International Aluminum Alloys Conference (ICAA16)
,
Montreal, QC
,
McGill University
.
50.
Pink
,
E.
,
Kumar
,
S.
, and
Tian
,
B.
,
2000
, “
Serrated Flow of Aluminium Alloys Influenced by Precipitates
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
17
24
.
51.
Chmelík
,
F.
,
Pink
,
E.
,
Król
,
J.
,
Balík
,
J.
,
Pešička
,
J.
, and
Lukáč
,
P.
,
1998
, “
Mechanisms of Serrated Flow in Aluminium Alloys With Precipitates Investigated by Acoustic Emission
,”
Acta Mater.
,
46
(
12
), pp.
4435
4442
.
52.
Bourget
,
J. P.
,
Fafard
,
M.
,
Shakeri
,
H. R.
, and
Côté
,
T.
,
2009
, “
Optimization of Heat Treatment in Cold-Drawn 6063 Aluminium Tubes
,”
J. Mater. Process. Technol.
,
209
(
11
), pp.
5035
5041
.
53.
Munitz
,
A.
,
Cotler
,
C.
, and
Talianker
,
M.
,
2000
, “
Aging Impact on Mechanical Properties and Microstructure of Al-6063
,”
J. Mater. Sci.
,
35
(
10
), pp.
2529
2538
.
54.
Ber
,
L. B.
,
2000
, “
Accelerated Artificial Ageing Regimes of Commercial Aluminium Alloys. II: Al–Cu, Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) Alloys
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
91
96
.
55.
Urreta
,
S. E.
,
Louchet
,
F.
, and
Ghilarducci
,
A.
,
2001
, “
Fracture Behaviour of an A1-Mg-Si Industrial Alloy
,”
Mater. Sci. Eng. A
,
302
(
2
), pp.
300
307
.
56.
Shah
,
K. B.
,
Kumar
,
S.
, and
Dwivedi
,
D. K.
,
2007
, “
Aging Temperature and Abrasive Wear Behaviour of Cast Al-(4%, 12%, 20%)Si-0.3% Mg Alloys
,”
Mater. Des.
,
28
(
6
), pp.
1968
1974
.
57.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
58.
Suh
,
N. P.
, and
Sin
,
H.-C.
,
1981
, “
The Genesis of Friction*
,”
Wear
,
69
(
1
), pp.
91
114
.
59.
Kato
,
K.
,
2000
, “
Wear in Relation to Friction—A Review
,”
Wear
,
241
(
2
), pp.
151
157
.
60.
Tohkai
,
M.
,
1979
, “
Microstructural Aspects of Friction
,”
Massachusetts Institute of Technology
.
61.
Moore
,
A. A. J. W.
, and
Tegart
,
W. J. M.
,
1952
, “
Relation Between Friction and Hardness R. Wilson (Discussion Meeting)
,”
Proc. R. Soc. A
,
212
(
1111
), pp.
452
458
.
62.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
2000
, “
Abrasion Resistance of Stainless-Steel Composites Reinforced With Hard TiB 2 Particles
,”
Compos. Sci. Technol.
,
60
(
8
), pp.
1141
1146
.
63.
Dwivedi
,
D. K.
,
2004
, “
Sliding Temperature and Wear Behaviour of Cast Al-Si-Mg Alloys
,”
Mater. Sci. Eng. A
,
382
(
1–2
), pp.
328
334
.
64.
Zambrano
,
O. A.
,
Aguilar
,
Y.
,
Valdés
,
J.
,
Rodríguez
,
S. A.
, and
Coronado
,
J. J.
,
2016
, “
Effect of Normal Load on Abrasive Wear Resistance and Wear Micromechanisms in FeMnAlC Alloy and Other Austenitic Steels
,”
Wear
,
348–349
, pp.
61
68
.
65.
Abdel Aziz
,
M.
,
Mahmoud
,
T. S.
,
Zaki
,
Z. I.
, and
Gaafer
,
A. M.
,
2006
, “
Heat Treatment and Wear Characteristics of Al2O3 and TiC Particulate Reinforced AA6063 Al Alloy Hybrid Composites
,”
ASME J. Tribol.
,
128
(
4
), pp.
891
894
.
66.
Sinha
,
A.
, and
Farhat
,
Z.
,
2014
, “
A Study of Porosity Effect on Tribological Behavior of Cast Al A380M and Sintered Al 6061 Alloys
,”
J. Surf. Eng. Mater. Adv. Technol.
,
5
(
1
), pp.
1
16
.
67.
Biswas
,
P.
,
Mondal
,
M. K.
, and
Mandal
,
D.
,
2019
, “
Effect of Mg2Si Concentration on the Dry Sliding Wear Behavior of Al-Mg2Si Composite
,”
ASME J. Tribol.
,
141
(
8
), p. 081601.
68.
Xu
,
X.
,
Ederveen
,
F. H.
,
Van Der Zwaag
,
S.
, and
Xu
,
W.
,
2016
, “
Correlating the Abrasion Resistance of Low Alloy Steels to the Standard Mechanical Properties : A Statistical Analysis Over a Larger Data Set
,”
Wear
,
368–369
, pp.
92
100
.
69.
Subramanian
,
C.
,
2010
, “
Wear Properties of Aluminium-Based Alloys
,”
Surface Engineering of Light Alloys Aluminium, Magnesium and Titanium Alloys
, pp.
40
57
.
70.
Sameezadeh
,
M.
,
Emamy
,
M.
, and
Farhangi
,
H.
,
2011
, “
Effects of Particulate Reinforcement and Heat Treatment on the Hardness and Wear Properties of AA 2024-MoSi 2 Nanocomposites
,”
Mater. Des.
,
32
(
4
), pp.
2157
2164
.
71.
Xu
,
L.
, and
Kennon
,
N. F.
,
1991
, “
A Study of the Abrasive Wear of Carbon Steels
,”
Wear
,
148
(
1
), pp.
101
112
.
72.
Zum Ghar
,
K. H.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
73.
Modi
,
O. P.
,
Mondal
,
D. P.
,
Prasad
,
B. K.
,
Singh
,
M.
, and
Khaira
,
H. K.
,
2003
, “
Abrasive Wear Behaviour of a High Carbon Steel: Effects of Microstructure and Experimental Parameters and Correlation With Mechanical Properties
,”
Mater. Sci. Eng. A
,
343
(
1–2
), pp.
235
242
.
74.
Erickson
,
R. C.
,
1982
, “
Effects of Mechanical Properties on the Wear Resistance of Journal Bearing Alloys Effects of Mechanical Properties on the Wear Resistance of Journal Bearing Alloys
,”
ASLE Trans.
,
25
(
3
), pp.
309
322
.
75.
Sundström
,
A.
,
Rendón
,
J.
, and
Olsson
,
M.
,
2001
, “
Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions
,”
Wear
,
250
(
1–12
), pp.
744
754
.
76.
Mutton
,
P. J.
, and
Watson
,
J. D.
,
1978
, “
Some Effects of Microstructure on the Abrasion Resistance of Metals
,”
Wear
,
48
(
2
), pp.
385
398
.
77.
Sedlacek
,
M.
,
Podgornik
,
B.
, and
Vizintin
,
J.
,
2009
, “
Influence of Surface Preparation on Roughness Parameters, Friction and Wear
,”
Wear
,
266
(
3–4
), pp.
482
487
.
78.
Demirci
,
I.
,
Mkaddem
,
A.
, and
El Khoukhi
,
D.
,
2014
, “
A Multigrains ‘ Approach to Model the Micromechanical Contact in Glass Fi Nishing
,”
Wear
,
321
, pp.
46
52
.
79.
Fan
,
Z.
,
Lei
,
X.
,
Wang
,
L.
,
Yang
,
X.
, and
Sanders
,
R. E.
,
2018
, “
Influence of Quenching Rate and Aging on Bendability of AA6016 Sheet
,”
Mater. Sci. Eng. A
,
730
, pp.
317
327
.
80.
Jourani
,
A.
, and
Bouvier
,
S.
,
2015
, “
Friction and Wear Mechanisms of 316L Stainless Steel in Dry Sliding Contact : Effect of Abrasive Particle Size Friction and Wear Mechanisms of 316L Stainless Steel in Dry Sliding Contact : Effect of Abrasive Particle Size
,”
Tribol. Trans.
,
58
(
1
), pp.
131
139
.
81.
Trevisiol
,
C.
,
Jourani
,
A.
, and
Bouvier
,
S.
,
2017
, “
Effect of Hardness, Microstructure, Normal Load and Abrasive Size on Friction and on Wear Behaviour of 35NCD16 Steel
,”
Wear
,
388–389
, pp.
101
111
.
82.
Narayanaswamy
,
B.
,
Hodgson
,
P.
, and
Beladi
,
H.
,
2016
, “
Effect of Particle Characteristics on the Two-Body Abrasive Wear Behaviour of a Pearlitic Steel
,”
Wear
,
354–355
(
May
), pp.
41
52
.
83.
Alizadeh
,
A.
,
Abdollahi
,
A.
, and
Biukani
,
H.
,
2015
, “
Creep Behavior and Wear Resistance of Al 5083 Based Hybrid Composites Reinforced With Carbon Nanotubes (CNTs) and Boron Carbide (B4C)
,”
J. Alloys Compd.
,
650
(
November
), pp.
783
793
.
84.
Hsu
,
S. M.
,
Shen
,
M. C.
, and
Ruff
,
A. W.
,
1997
, “
Wear Prediction for Metals
,”
Tribol. Int.
,
30
(
5
), pp.
377
383
.
You do not currently have access to this content.