Abstract

We have studied the friction behavior based on liquid crystal (LC) alignment of a unique tribological system composed of a nematic LC and polyimide (PI). The LC was used as a lubricant and a tribological factor with molecular alignment ability. PI was used as both a rubbing pair part and a LC alignment agent. The LCs used as lubricants included the single LC 5CB and the mixed LCs 5CB–2UTPP3 and 3PEP5–3UTPP4. The PI used as the friction pair was 6FDA-ODA PI, and its counterpart was GCr15 steel. For this system, it was found that under the premise that the nematic phase temperature range of the selected LC meets the operating temperature of the friction test at a suitable ambient temperature, the operating speed and load are controlled to maintain a stable lubricating film thickness between the friction pairs during operation of the system. Moreover, by avoiding excessive or insufficient friction heat generated by the running speed being too high or too low to change the phase state of the LC, with the anchoring energy between the PI and the LC, the LC molecules will align in the rubbing direction, that is, they will arrange parallel to each other along the grooves, which can contribute to achieve superlubricity behavior.

References

1.
Hirano
,
M.
, and
Shinjo
,
K.
,
1990
, “
Atomistic Locking and Friction
,”
Phys. Rev. B
,
41
(
17
), pp.
11837
11851
.
2.
Dienwiebel
,
M.
,
Verhoeven
,
G. S.
,
Pradeep
,
N.
,
Frenken
,
J. W. N.
,
Heimberg
,
J. A.
, and
Zandbergen
,
H. W.
,
2004
, “
Superlubricity of Graphite
,”
Phys. Rev. Lett.
,
92
(
12
), p.
126101
.
3.
Kawai
,
S.
,
Benassi
,
A.
,
Gnecco
,
E.
,
Sode
,
E.
,
Pawlak
,
R.
,
Feng
,
X.
,
Mullen
,
K.
,
Passerone
,
D.
,
Pignedoli
,
C. A.
,
Ruffieux
,
P.
,
Fasel
,
R.
, and
Meyer
,
E.
,
2016
, “
Superlubricity of Graphene Nanoribbons on Gold Surfaces
,”
Science
,
351
(
6276
), pp.
957
961
.
4.
Martin
,
J. M.
,
Donnet
,
C.
,
Le mogne
,
T.
, and
Epicier
,
T.
,
1993
, “
Superlubricity of Molybdenum Disulphide
,”
Phys. Rev. B
,
48
(
14
), pp.
10583
10586
.
5.
Berman
,
D.
,
Deshmukh
,
S. A.
,
Sankaranarayanan
,
S. K. R. S.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2015
, “
Friction. Macroscale Superlubricity Enabled by Graphene Nanoscroll Formation
,”
Science
,
348
(
6239
), pp.
1118
1122
.
6.
Wang
,
C. B.
,
Yang
,
S. R.
,
Wang
,
Q.
,
Wang
,
Z.
, and
Zhang
,
J.
,
2008
, “
Super-Low Friction and Super-Elastic Hydrogenated Carbon Films Originated From a Unique Fullerene-Like Nanostructure
,”
Nanotechnology
,
19
(
22
), p.
225709
.
7.
Liu
,
Z.
,
Yang
,
J.
,
Grey
,
F.
,
Liu
,
J. Z.
,
Liu
,
Y.
,
Wang
,
Y.
,
Yang
,
Y.
,
Cheng
,
Y.
, and
Zheng
,
Q.
,
2012
, “
Observation of Microscale Superlubricity in Graphite
,”
Phys. Rev. Lett.
,
108
(
20
), p.
205503
.
8.
Yang
,
J. R.
,
Liu
,
Z.
,
Grey
,
F.
,
Xu
,
Z.
,
Li
,
X.
,
Liu
,
Y.
,
Urbakh
,
M.
,
Cheng
Yao
and
Zheng
,
Q.
,
2013
, “
Observation of High-Speed Microscale Superlubricity in Graphite
,”
Phys. Rev. Lett.
,
110
(
25
), p.
255504
.
9.
Vu
,
C. C.
,
Zhang
,
S.
,
Urbakh
,
M.
,
Li
,
Q.
,
He
,
Q.-C.
, and
Zheng
,
Q.
,
2016
, “
Observation of Normal-Force-Independent Superlubricity in Mesoscopic Graphite Contacts
,”
Phys. Rev. B
,
94
(
8
), p.
081405
.
10.
Deng
,
H.
,
Ma
,
M.
,
Song
,
Y.
,
He
,
Q.
, and
Zheng
,
Q.
,
2018
, “
Structural Superlubricity in Graphite Flakes Assembled Under Ambient Conditions
,”
Nanoscale
,
10
(
29
), pp.
14314
14320
.
11.
Ge
,
X. Y.
,
Li
,
J. J.
, and
Luo
,
J. B.
,
2019
, “
Macroscale Superlubricity Achieved With Various Liquid Molecules: A Review
,”
Front. Mech. Eng.
,
5
(
2
), pp.
1
15
.
12.
Liu
,
P. X.
,
Liu
,
Y. H.
,
Yang
,
Y.
,
Chen
,
Z.
,
Li
,
J. J.
, and
Luo
,
J. B.
,
2014
, “
Mechanism of Biological Liquid Superlubricity of Brasenia schreberi Mucilage
,”
Langmuir
,
30
(
13
), pp.
3811
3816
.
13.
Li
,
J. J.
,
Liu
,
Y. H.
,
Luo
,
J. B.
,
Liu
,
P. X.
, and
Zhang
,
C. H.
,
2012
, “
Excellent Lubricating Behavior of Brasenia schreberi Mucilage
,”
Langmuir
,
28
(
20
), pp.
7797
7802
.
14.
Li
,
J. J.
,
Zhang
,
C. H.
, and
Luo
,
J. B.
,
2011
, “
Superlubricity Behavior With Phosphoric Acid–Water Network Induced by Rubbing
,”
Langmuir
,
27
(
15
), pp.
9413
9417
.
15.
Li
,
J. J.
,
Zhang
,
C. H.
,
Ma
,
L. R.
,
Liu
,
Y. H.
, and
Luo
,
J. B.
,
2012
, “
Superlubricity Achieved With Mixtures of Acids and Glycerol
,”
Langmuir
,
29
(
1
), pp.
271
275
.
16.
Li
,
J.
,
Gao
,
T.
, and
Luo
,
J.
,
2018
, “
Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes
,”
Adv. Sci.
,
5
(
3
), p.
1700616
.
17.
Li
,
J. J.
,
Ma
,
L. R.
,
Zhang
,
S. H.
,
Zhang
,
C. H.
,
Liu
,
Y. H.
, and
Luo
,
J. B.
,
2013
, “
Investigations on the Mechanism of Superlubricity Achieved With Phosphoric Acid Solution by Direct Observation
,”
J. Appl. Phys.
,
114
(
11
), p.
114901
.
18.
Li
,
J. J.
,
Zhang
,
C. H.
,
Deng
,
M. M.
, and
Luo
,
J. B.
,
2015
, “
Investigation of the Difference in Liquid Superlubricity Between Water- and Oil-Based Lubricants
,”
RSC Adv.
,
5
(
78
), pp.
63827
63833
.
19.
Sheng
,
L. P.
,
Li
,
F. F.
, and
Fan
,
C. K.
,
2009
, “
Research Progress of New Lubricating Technology
,”
Lubr. Oil
,
24
(
1
), pp.
11
15+53
.
20.
Zhai
,
J.
,
Lu
,
S. F.
,
Wang
,
L. Y.
, and
Wen
,
S. Z.
,
1989
, “
The Investigation of Lubrication Performance for Liquid Crystal Additive
,”
Lubr. Eng.
,
14
(
5
), pp.
9
150
.
21.
Zhang
,
Y.
,
Wu
,
J.
,
Wang
,
Y. M.
, and
Hu
,
J. Q.
,
2007
, “
Advance of Liquid Crystal Lubrication Additives
,”
Chem. Intermed.
,
7
, pp.
24
28
.
22.
Kumar
,
S.
,
2005
, “
Self-Organization of Disc-Like Molecules: Chemical Aspects
,”
ChemInform
,
35
(
1
), pp.
83
109
.
23.
Ros
,
M. B.
,
Serrano
,
J. L.
,
de la Fuente
,
M. R..
, and
Folcia
,
C. L.
,
2005
, “
Banana-Shaped Liquid Crystals: A New Field to Explore
,”
J. Mater. Chem.
,
15
(
48
), pp.
5093
5098
.
24.
Carrión
,
F. J.
,
Martínez-Nicolás
,
G.
,
Iglesias
,
P.
,
Sanes
,
J.
, and
Bermúdez
,
M. D.
,
2009
, “
Liquid Crystals in Tribology
,”
Int. J. Mol. Sci.
,
10
(
9
), pp.
4102
4115
.
25.
Gao
,
Y.
,
Ma
,
L. R.
, and
Luo
,
J. B.
,
2016
, “
Friction Anisotropy Induced by Oriented Liquid Crystal Molecules
,”
Tribol. Lett.
,
61
(
3
), pp.
124
130
.
26.
Gao
,
Y.
,
Xue
,
B
,
Ma
,
L.
, and
Luo
,
J.
,
2017
, “
Effect of Liquid Crystal Molecular Orientation Controlled by an Electric Field on Friction
,”
Tribol. Int.
,
115
, pp.
477
482
.
27.
Iglesias
,
P.
,
Bermúdez
,
M. D.
,
Carrión
,
F. J.
, and
Martínez-Nicolás
,
G.
,
2004
, “
Friction and Wear of Aluminium-Steel Contacts Lubricated With Ordered Fluids-Neutral and Ionic Liquid Crystals as Oil Additives
,”
Wear
,
256
(
3
), pp.
386
392
.
28.
Mori
,
S.
, and
Iwata
,
H.
,
1996
, “
Relationship Between Tribological Performance of Liquid Crystals and Their Molecular Structure
,”
Tribol. Int.
,
29
(
1
), pp.
35
39
.
29.
Chen
,
H.
,
Xu
,
C.
,
Xiao
,
G. C.
,
Chen
,
Z.
,
Yi
,
M.
, and
Zhang
,
J.
,
2019
, “
Effect of Running-in Induced Groove-Structured Wear and Fe(Acac)3 on Ultralow Friction When Lubricating With 5CB Liquid Crystal
,”
Tribol. Lett.
,
67
(
43
), pp.
1
8
.
30.
Fang
,
Y. P.
,
Zhang
,
Q.
, and
Wang
,
Y. H.
,
2009
, “
Effects of Variety of Liquid Crystals and Process Conditions on Pretilt Angle
,”
Polym. Mater. Sci. Eng.
,
25
(
11
), pp.
69
71
.
31.
Ito
,
T.
,
Nakanishi
,
K.
,
Nishikawa
,
M.
,
Yokoyama
,
Y.
, and
Takeuchi
,
Y.
,
1995
, “
Regularity and Narrowness of the Intervals of the Microgrooves on the Rubbed Polymer Surface for Liquid Crystal Alignment
,”
Polym. J.
,
27
(
3
), pp.
240
246
.
32.
Fu
,
X. F.
,
2006
, “
Study on Pretilt Tangle Induced by Polyimide Alignment Films With Side Chain Containing Biphenyl Unit
,”
Master dissertation
,
Sichuan University
,
Sichuan, China
.
33.
Shao
,
X.
,
Kai
,
M.
,
Ma
,
R.
, and
Huang
,
X.
,
1994
, “
Mechanism of Polymer Alignment of Liquid Crystal Materials
,”
Chin. Lett. Liq. Cryst.
,
2
(
2
), pp.
134
137
.
34.
Geary
,
J. M.
,
Goodby
,
J. W.
,
Kmetz
,
A. R.
, and
Patel
,
J. S.
,
1987
, “
The Mechanism of Polymer Alignment of Liquid Crystal Materials
,”
J. Appl. Phys.
,
62
(
10
), pp.
4100
4107
.
35.
Kizilkaya
,
C.
,
Mülazim
,
Y.
,
Kahraman
,
M. V.
,
Apohan
,
N. K.
, and
Güngör
,
A.
,
2012
, “
Synthesis and Characterization of Polyimide/Hexagonal Boron Nitride Composite
,”
J. Appl. Polym. Sci.
,
124
(
1
), pp.
706
712
.
36.
Tian
,
J. S.
,
Wang
,
H. Y.
,
Huang
,
Z. Y.
,
Lu
,
R. G.
,
Cong
,
P. H.
,
Liu
,
X. J.
, and
Li
,
T. S.
,
2010
, “
Investigation on Tribological Properties of Fluorinated Polyimide
,”
J. Macromol. Sci. Part B
,
49
(
4
), pp.
791
801
.
37.
Xin
,
Y.
,
Li
,
T.
,
Xu
,
F.
, and
Wang
,
M.
,
2017
, “
Multidimensional Structure and Enhancement Performance of Modified Graphene/Carbon Nanotube Assemblies in Tribological Properties of Polyimide Nanocomposites
,”
RSC Adv.
,
7
(
34
), pp.
20742
20753
.
38.
Zhu
,
L.
,
You
,
L.
,
Shi
,
Z.
,
Song
,
H.
, and
Li
,
S.
,
2017
, “
An Investigation on the Graphitic Carbon Nitride Reinforced Polyimide Composite and Evaluation of Its Tribological Properties
,”
J. Appl. Polym. Sci.
,
134
(
41
), p.
45403
.
39.
Lv
,
M.
,
Han
,
F.
,
Wang
,
Q. H.
,
Wang
,
T. M.
, and
Liang
,
Y. M.
,
2017
, “
The Structure Properties and Tribological Behavior of the Ionic Liquid-Polyimide Composite Films Under High-Vacuum Environment
,”
High Perform. Polym.
,
29
(
2
), pp.
170
177
.
You do not currently have access to this content.