Abstract

In this work, the dynamic process of oil droplets impacting and migrating on structured surfaces with imposed thermal gradients was investigated. It was observed that on an isothermal smooth surface, a lubricant droplet would impact, spread to a maximum diameter, and retract; while on a non-isothermal smooth surface, an asymmetric geometrical morphology of droplet was generated, accompanying with a migration process. Relevant dimensionless parameters were employed to evaluate the dynamic process, and the physical mechanism was revealed. Decorating surfaces with convergent microgrooves pattern could not only increase the maximum spreading diameter but also accelerate the migration process. These are beneficial for the heat exchange efficiency and lubrication performances.

References

1.
Scriven
,
L. E.
, and
Sternling
,
C. V.
,
1960
, “
The Marangoni Effects
,”
Nature
,
187
(
4733
), pp.
186
188
.
2.
Dai
,
Q. W.
,
Khonsari
,
M. M.
,
Shen
,
C.
,
Huang
,
W.
, and
Wang
,
X. L.
,
2016
, “
Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient
,”
Langmuir
,
32
(
30
), pp.
7485
7492
.
3.
Bormashenko
,
E. Y.
,
2017
,
Physics of Wetting: Phenomena and Applications of Fluids on Surfaces
,
De Gruyter
,
Berlin, Germany
.
4.
Li
,
C.
,
Zhao
,
D.
,
Wen
,
J.
, and
Lu
,
X.
,
2019
, “
Numerical Investigation of Wafer Drying Induced by the Thermal Marangoni Effect
,”
Int. J. Heat Mass Transfer
,
132
, pp.
689
698
.
5.
Dai
,
Q. W.
,
Chen
,
S. Q.
,
Huang
,
W.
,
Wang
,
X. L.
, and
Hardt
,
S.
,
2022
, “
On the Thermocapillary Migration Between Parallel Plates
,”
Int. J. Heat Mass Transfer
,
182
, p.
121962
.
6.
Grützmacher
,
P. G.
,
Rosenkranz
,
A.
, and
Gachot
,
C.
,
2016
, “
How to Guide Lubricants—Tailored Laser Surface Patterns on Stainless Steel
,”
Appl. Surf. Sci.
,
370
, pp.
59
66
.
7.
Grützmacher
,
P. G.
,
Rosenkranz
,
A.
,
Szurdak
,
A.
,
Gachot
,
C.
,
Hirt
,
G.
, and
Mücklich
,
F.
,
2018
, “
Lubricant Migration on Stainless Steel Induced by bio-Inspired Multi-Scale Surface Patterns
,”
Mater. Des.
,
150
, pp.
55
63
.
8.
Yang
,
X.
,
Zhuang
,
K.
,
Lu
,
Y.
, and
Wang
,
X.
,
2021
, “
Creation of Topological Ultraslippery Surfaces for Droplet Motion Control
,”
ACS Nano
,
15
(
2
), pp.
2589
2599
.
9.
Dai
,
Q. W.
,
Huang
,
W.
,
Wang
,
X. L.
, and
Khonsari
,
M. M.
,
2021
, “
Directional Interfacial Motion of Liquids: Fundamentals, Evaluations, and Manipulation Strategies
,”
Tribol. Int.
,
154
, p.
106749
.
10.
Flouros
,
M.
,
Hendrick
,
P.
,
Outirba
,
B.
,
Cottier
,
F.
, and
Proestler
,
S.
,
2015
, “
Thermal and Flow Phenomena Associated With the Behavior of Brush Seals in Aero Engine Bearing Chambers
,”
ASME J. Eng. Gas Turbines Power.
,
137
(
9
), p.
092503
.
11.
Sathyan
,
K.
,
Hsu
,
H. Y.
,
Lee
,
S. H.
, and
Gopinath
,
K.
,
2011
, “
Development of a Centrifugal Oil Lubricator for Long-Term Lubrication of Spacecraft Attitude Control Systems—Design and Theory
,”
Tribol. Trans.
,
54
(
5
), pp.
770
778
.
12.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Drop Impact on Heated Walls
,”
Int. J. Heat Mass Transfer
,
106
, pp.
103
126
.
13.
Höhn
,
B. R.
,
Michaelis
,
K.
, and
Otto
,
H. P.
,
2009
, “
Minimised Gear Lubrication by a Minimum oil/air Flow Rate
,”
Wear
,
266
(
3
), pp.
461
467
.
14.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley & Sons Ltd
,
Chi Chester
.
15.
Liu
,
Y.
,
Andrew
,
M.
,
Li
,
J.
,
Yeomans
,
J. M.
, and
Wang
,
Z.
,
2015
, “
Symmetry Breaking in Drop Bouncing on Curved Surfaces
,”
Nat. Commun.
,
6
(
1
), p.
10034
.
16.
Castrejón-Pita
,
J. R.
,
Muñoz-Sánchez
,
B. N.
,
Hutchings
,
I. M.
, and
Castrejón-Pita
,
A. A.
,
2016
, “
Droplet Impact Onto Moving Liquids
,”
J. Fluid Mech.
,
809
, pp.
716
725
.
17.
Li
,
J.
,
Hou
,
Y.
,
Liu
,
Y.
,
Hao
,
C.
,
Li
,
M.
,
Chaudhury
,
M. K.
,
Yao
,
S.
, and
Wang
,
Z.
,
2016
, “
Directional Transport of High-Temperature Janus Droplets Mediated by Structural Topography
,”
Nat. Phys.
,
12
(
6
), pp.
606
612
.
18.
Vaikuntanathan
,
V.
, and
Sivakumar
,
D.
,
2016
, “
Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture
,”
Langmuir
,
32
(
10
), pp.
2399
2409
.
19.
Liu
,
Y.
,
Moevius
,
L.
,
Xu
,
X.
,
Qian
,
T.
,
Yeomans
,
J. M.
, and
Wang
,
Z.
,
2014
, “
Pancake Bouncing on Superhydrophobic Surfaces
,”
Nat. Phys.
,
10
(
7
), pp.
515
519
.
20.
Su
,
J.
,
Legchenkova
,
I.
,
Liu
,
C.
,
Lu
,
C.
,
Ma
,
G.
,
Bormashenko
,
E.
, and
Liu
,
Y.
,
2020
, “
Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces
,”
Langmuir
,
36
(
2
), pp.
534
539
.
21.
Ma
,
Q.
,
Wu
,
X.
,
Li
,
T.
, and
Chu
,
F.
,
2020
, “
Droplet Boiling on Heated Surfaces With Various Wettabilities
,”
Appl. Therm. Eng.
,
167
, p.
114703
.
22.
Lu
,
Y.
,
Shen
,
Y.
,
Tao
,
J.
,
Wu
,
Z.
,
Chen
,
H.
,
Jia
,
Z.
,
Xu
,
Y.
, and
Xie
,
X.
,
2020
, “
Droplet Directional Movement on the Homogeneously Structured Superhydrophobic Surface With the Gradient Non-Wettability
,”
Langmuir
,
36
(
4
), pp.
880
888
.
23.
Yuan
,
S. H.
,
Huang
,
W.
, and
Wang
,
X. L.
,
2011
, “
Orientation Effects of Micro-Grooves on Sliding Surfaces
,”
Tribol. Int.
,
44
(
9
), pp.
1047
1054
.
24.
Dai
,
Q. W.
,
Huang
,
W.
, and
Wang
,
X. L.
,
2017
, “
Micro-Grooves Design to Modify the Thermo-Capillary Migration of Paraffin oil
,”
Meccanica
,
52
(
1
), pp.
171
181
.
25.
Roberts
,
E. W.
, and
Todd
,
M. J.
,
1990
, “
Space and Vacuum Tribology
,”
Wear
,
136
(
1
), pp.
157
167
.
26.
Jones
,
W. R.
, and
Jansen
,
M. J.
,
2008
, “
Tribology for Space Applications
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
8
), pp.
997
1004
.
27.
Rioboo
,
R.
,
Tropea
,
C.
, and
Marengo
,
M.
,
2001
, “
Outcomes From a Drop Impact on Solid Surfaces
,”
Atomization Sprays
,
11
(
2
), pp.
155
165
.
28.
Wasan
,
D. T.
,
Nikolov
,
A. D.
, and
Brenner
,
H.
,
2001
, “
Droplets Speeding on Surfaces
,”
Science
,
291
(
5504
), pp.
605
606
.
29.
Thoroddsen
,
S. T.
,
Etoh
,
T. G.
, and
Takehara
,
K.
,
2008
, “
High-Speed Imaging of Drops and Bubbles
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
257
285
.
30.
Roisman
,
I. V.
, and
Tropea
,
C.
,
2002
, “
Impact of a Drop Onto a Wetted Wall: Description of Crown Formation and Propagation
,”
J. Fluid Mech.
,
472
, pp.
373
397
.
31.
Bartolo
,
D.
,
Josserand
,
C.
, and
Bonn
,
D.
,
2005
, “
Retraction Dynamics of Aqueous Drops upon Impact on non-Wetting Surfaces
,”
J. Fluid Mech.
,
545
, pp.
329
338
.
32.
Eggers
,
J.
,
Fontelos
,
M. A.
,
Josserand
,
C.
, and
Zaleski
,
S.
,
2010
, “
Drop Dynamics After Impact on a Solid Wall: Theory and Simulations
,”
Phys. Fluids
,
22
(
6
), p.
062101
.
33.
Vanhook
,
S. J.
,
Schatz
,
M. F.
,
Swift
,
J. B.
,
Mccormick
,
W. D.
, and
Swinney
,
H. L.
,
1997
, “
Long-wavelength Surface-Tension-Driven Benard Convection: Experiment and Theory
,”
J. Fluid Mech.
,
345
, pp.
45
78
.
34.
De Gennes
,
P.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.
35.
Fu
,
X.
,
Ba
,
Y.
, and
Sun
,
J.
,
2021
, “
Numerical Study of Thermocapillary Migration Behaviors of Droplets on a Grooved Surface With a Three-Dimensional Color-Gradient Lattice Boltzmann Model
,”
Phys. Fluids
,
33
(
6
), p.
062108
.
You do not currently have access to this content.