Abstract

In this research, we utilize image processing to analyze surfaces acquired from slurry-erosion tests carried out on AISI 5117 steel at various velocities and impact angles of 30 deg and 90 deg. The fractal and wavelet decomposition transform are two analysis tools that are particularly promising in this regard. These can be used to extract metrics that characterize slurry erosion in the same way that erosion rate is characterized. The study found that for a higher velocity of 15 m/s and a 30-deg impact angle, the fractal value was larger, irrespective of magnification. The fractal value is also in a positive linear regression with magnification. The extracted features of wavelet analysis were not distinctive for slurry-erosion behavior. The role of impact velocity in creating erosion damage is related to the variety of erosion mechanisms that are dependent on the particles’ kinetic energy. Microscopic examinations of damaged surfaces revealed that extruded lips indentation was the major mechanism of erosion, which occurred at 5 m/s speed and 30-deg impingement angle. Ploughing was proved that it was the predominant erosion mechanism at high velocity. Hence, the impact velocity determines the length of the wear tracks created by the ploughing mechanism.

References

1.
Miller
,
J. E.
,
1992
,
“Slurry Erosion. In: ASM Handbook,” Friction, Lubrication, and Wear Technology
, Vol.
18
,
ASM International
,
Material Park, OH
, pp.
233
235
.
2.
Fang
,
O.
,
Sidky
,
P. S.
, and
Hocking
,
M. G.
,
1998
, “
Microripple Formation and Removal Mechanism of Ceramic Materials by Solid-Liquid Slurry Erosion
,”
Wear
,
223
(
1–2
), pp.
93
101
.
3.
Lathabai
,
S.
, and
Pender
,
D. C.
,
1995
, “
Microstructure Influence in Slurry Erosion of Ceramics
,”
Wear
,
189
(
1–2
), pp.
122
135
.
4.
Li
,
Y.
,
Burstein
,
G. T.
, and
Hutchings
,
I. M.
,
1995
, “
The Influence of Corrosion on the Erosion of Aluminum by Aqueous Silica Slurries
,”
Wear
,
186–187
, pp.
515
522
.
5.
Iwai
,
Y.
, and
Nambu
,
K.
,
1997
, “
Slurry Wear Properties of Pump Lining Materials
,”
Wear
,
210
(
1–2
), pp.
211
219
.
6.
Tsai
,
W.
,
Humphrey
,
J. A. C.
,
Cornet
,
I.
, and
Levy
,
A. V.
,
1981
, “
Experimental Measurement of Accelerated Erosion in a Slurry Pot Tester
,”
Wear
,
68
(
3
), pp.
289
303
.
7.
Stanisa
,
B.
, and
Ivusic
,
V.
,
1995
, “
Erosion Behaviour and Mechanisms for Steam Turbine Rotor Blades
,”
Wear
,
186–187
, pp.
395
400
.
8.
Humphrey
,
J. A. C.
,
1990
, “
Fundaments of Fluid Motion in Erosion by Solid Particle Impact
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
170
195
.
9.
Clark
,
H. M.
,
1992
, “
The Influence of the Flow Field in Slurry Erosion
,”
Wear
,
152
(
2
), pp.
223
240
.
10.
Alam
,
T.
,
Aminul Islam
,
M.
, and
Farhat
,
Z. N.
,
2016
, “
Slurry Erosion of Pipeline Steel: Effect of Velocity and Microstructure
,”
ASME J. Tribol.
,
138
(
2
), p.
021604
.
11.
Singh
,
J.
, and
Singh
,
A. P.
,
2019
, “
Effect of Jet Velocity and Angle of Impact on Slurry Erosion Rate of Steels and Super Alloys
,”
J. Com. Theory
,
XII
(
VII
), pp.
529
536
.
12.
Reyes-Mojena
,
M. Á.
,
Sánchez-Orozco
,
M.
,
Carvajal-Fals
,
H.
,
Zamora
,
R. S.
, and
Camello-Lima
,
C. R.
,
2017
, “
A Comparative Study on Slurry Erosion Behavior of HVOF Sprayed Coatings
,”
Dyna
,
84
(
202
), pp.
239
246
.
13.
Yu
,
B.
,
Li
,
D. Y.
, and
Grondin
,
A.
,
2013
, “
Effects of the Dissolved Oxygen and Slurry Velocity on Erosion–Corrosion of Carbon Steel in Aqueous Slurries with Carbon Dioxide and Silica Sand
,”
Wear
,
302
(
1–2
), pp.
1609
1614
.
14.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2014
, “
Stepwise Erosion as a Method for Investigating the Wear Mechanisms at Different Impact Angles in Slurry Erosion
,”
ASME J. Tribol.
,
136
(
2
), p.
021608
.
15.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2014
, “
Effect of Impact Angle on Slurry Erosion Behavior and Mechanisms of Carburized AISI 5117 Steel
,”
ASME J. Tribol.
,
136
(
1
), p.
011106
.
16.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impact Angle on Slurry Erosion Behavior and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
17.
Sapate
,
S. G.
, and
Haque
,
N.
,
2011
, “
Effect of Microstructure on Slurry Erosion Behaviour of Weld Hard Facing Alloys
,”
J. Mater. Des. Appl.
,
225
(
I
), pp.
49
59
.
18.
Al-Bukhaiti
,
M. A.
,
Abouel-Kasem
,
A. A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2017
, “
A Study on Slurry Erosion Behavior of High Chromium White Cast Iron
,”
ASME J. Tribol.
,
139
(
4
), p.
041102
.
19.
Saleh
,
B.
,
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2015
, “
Effect of Surface Properties Modification on Slurry Erosion-Corrosion Resistance of AISI 5117 Steel
,”
ASME J. Tribol.
,
137
(
3
), p.
031105
.
20.
Aso
,
S.
,
Goto
,
S.
,
Komatsu
,
Y.
,
Liu
,
W.
, and
Liu
,
C.
,
1999
, “
Slurry Erosion of Fe-15 Mass % 25 Mass % Cr-C-B Eutectic Alloys
,”
Wear
,
233–235
, pp.
160
167
.
21.
Lindsley
,
B. A.
, and
Marder
,
A,R
,
1999
, “
The Effect of Velocity on the Solid Particle Erosion Rate of Alloys
,”
Wear
,
225–229
, pp.
510
516
.
22.
Clark
,
H. M.
,
1991
, “
On the Impact Rate and Impact Energy of Particles in a Slurry pot Erosion Tester
,”
Wear
,
147
(
1
), pp.
165
183
.
23.
Lin
,
H. C.
,
Wu
,
S. K.
, and
Yeh
,
C. H.
,
2001
, “
A Comparison of Slurry Erosion Characteristics of TiNi Shape Memory Alloys and SUS 304 Stainless Steel
,”
Wear
,
249
(
7
), pp.
557
565
.
24.
Wong
,
K. K.
, and
Clark
,
H. M.
,
1993
, “
A Model of Particle Velocities and Trajectories in Slurry Erosion pot Tester
,”
Wear
,
160
(
1
), pp.
95
104
.
25.
Hojo
,
H.
,
Tsuda
,
K.
, and
Yabu
,
T.
,
1986
, “
Erosion Damage of Polymeric Materials by Slurry
,”
Wear
,
112
(
1
), pp.
17
28
.
26.
Levy
,
A. V.
, and
Hickey
,
G.
,
1987
, “
Liquid Solid Particle Slurry Erosion of Steels
,”
Wear
,
117
(
2
), pp.
129
146
.
27.
Lin
,
F. Y.
, and
Shao
,
H. S.
,
1991
, “
Effect of Impact Velocity on Slurry Erosion and a New Design of Slurry Erosion Tester
,”
Wear
,
143
(
2
), pp.
231
240
.
28.
Levy
,
A. V.
,
Jee
,
N.
, and
Yau
,
P.
,
1987
, “
Erosion Steel in Coal-Solved Slurries
,”
Wear
,
117
(
2
), pp.
115
127
.
29.
Elkholy
,
A.
,
1983
, “
Prediction of Abrasive Wear for Slurry Pump Materials
,”
Wear
,
84
(
1
), pp.
39
49
.
30.
Stack
,
M. M.
, and
Pungwiwat
,
N.
,
1998
, “
A Note on the Construction of Materials Performance Maps for Resistance to Erosion in Aqueous Slurries
,”
Wear
,
215
(
1–2
), pp.
67
76
.
31.
Clark
,
H. M.
,
1991
, “
A Comparison of the Erosion Rate of Casing Steels by Sand/oil Suspensions
,”
Wear
,
150
(
1–2
), pp.
217
230
.
32.
El-Alej
,
M. E.
,
2014
, “
Monitoring Sand Particle Concentration in Multiphase Flow Using Acoustic Emission Technology
,”
PhD thesis
,
Cranfield University
.
33.
Abouel-Kasem
,
A.
,
2011
, “
Particle Size Effects on Slurry Erosion of 5117 Steels
,”
ASME J. Tribol.
,
133
(
1
), p.
014502
.
34.
Droubi
,
M. G.
, and
Reuben
,
R. L.
,
2016
, “
Monitoring Acoustic Emission (AE) Energy of Abrasive Particle Impacts in a Slurry Flow Loop Using a Statistical Distribution Model
,”
Applied Acoustics
,
113
, pp.
202
209
.
35.
Buttle
,
D. J.
, and
Scruby
,
C. B.
,
1990
, “
Characterization of Particle Impact by Quantitative Acoustic Emission
,”
Wear
,
137
(
1
), pp.
63
90
.
36.
Droubi
,
M. G.
,
Reuben
,
R. L.
, and
White
,
G.
,
2012
, “
Acoustic Emission (AE) Monitoring of Abrasive Particle Impacts on Carbon Steel
,”
Proc IMechE, Part E, J Process Mech Eng.
,
226
(
3
), pp.
187
204
.
37.
Ukpai
,
I.
,
Barker
,
R.
,
Hu
,
X.
, and
Neville
,
A.
,
2013
, “
Exploring the Erosive Wear of X65 Carbon Steel by Acoustic Emission Method
,”
Wear
,
301
(
1–2
), pp.
370
382
.
38.
Wild
,
G.
, and
Hinckley
,
S.
,
2007
, “
Fiber Bragg Grating Sensors for Acoustic Emission and Transmission Detection Applied to Robotic NDE in Structural Health Monitoring
,”
Proceedings of the IEEE Sensors Applications Symposium
,
March
, pp.
1
6
.
39.
Abouel-Kasem
,
A.
,
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2009
, “
Fractal Characterization of Slurry Eroded Surfaces at Different Impact Angles
,”
ASME J. Tribol.
,
131
(
3
), p.
031601
.
40.
Abouel-Kasem
,
A.
,
Alturki
,
F. A.
, and
Ahmed
,
S. M.
,
2011
, “
Fractal Analysis of Cavitation Eroded Surface in Dilute Emulsions,”
ASME J. Tribol
,
133
(
4
), p.
041403
.
41.
Alturki
,
F. A.
,
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2013
, “
Characteristics of Cavitation Erosion Using Image Processing Techniques
,”
ASME J. Tribol.
,
135
(
1
), p.
041403
.
42.
Russ
,
J. C.
,
1994
,
Fractal Surfaces
,
Plenum Press
,
New York
.
43.
Kassim
,
A. A.
,
Zhu
,
M.
, and
Mannan
,
M. A.
,
2002
, “
Texture Analysis Using Fractals for Tool Wear. Monitoring
,”
Proceedings International Conference on Image Processing
,
Rochester, NY
,
Sept. 22–25
, IEEE, pp.
III-105
III-108
.
44.
Yuan
,
C. Q.
,
Li
,
J.
,
Yan
,
X. P.
, and
Peng
,
Z.
,
2003
, “
The Use of the Fractal Description to Characterize Engineering Surfaces and Wear Particles
,”
Wear
,
255
(
1–6
), pp.
315
326
.
45.
Stachowiak
,
G. W.
, and
Podsiadlo
,
P.
,
2001
, “
Characterization and Classification of Wear Particles and Surfaces
,”
Wear
,
249
(
3–4
), pp.
194
200
.
46.
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2000
, “
Scale-Invariant Analysis of Wear Particle Morphology—A Preliminary Study
,”
Trib. Int.
,
33
(
3–4
), pp.
289
295
.
47.
Stachowiak
,
G. W.
,
1998
, “
Numerical Characterization of Wear Particles Morphology and Angularity of Particles and Surfaces
,”
Trib. Int.
,
31
(
1–3
), pp.
139
157
.
48.
Ghosh
,
K.
, and
Pandey
,
R. K.
,
2020
, “
Fractal Assessment of Thin Films Deposited by Random and Ballistic Deposition Models
,” Proceedings of the
AIP Conference
,
2265
, p.
030316
.
49.
Russ
,
J. C.
,
2001
, “Fractal Analysis,”
Encyclopedia of Material: Science of Technology
, pp.
3247
3254
.
50.
Zhang
,
J.
,
2006
, “
Detection and Monitoring of Wear Using Imaging Methods
,”
Ph.D. thesis
,
Univ. of Twente
,
The Netherlands
.
51.
Babadagli
,
T.
, and
Develi
,
K.
,
2000
, “
Fractal Analysis of Natural and Synthetic Fracture Surfaces of Geothermal Reservoir Rocks
,”
2000 World Geothermal Congress
,
Kyushu-Tohoku, Japan
,
May 28–June 10
, pp.
2515
2520
.
52.
Lewis
,
A. S.
, and
Knowles
,
G.
,
1992
, “
Image Compression Using the 2-D Wavelet Transform, Image Processing
,”
IEEE Trans.
,
1
(
2
), pp.
244
250
.
53.
Huang
,
K.
, and
Aviyente
,
S.
,
2008
, “
Wavelet Feature Selection for Image Classification
,”
IEEE Trans. Image Process
,
17
(
9
), pp.
1709
1720
.
54.
Mallat
,
S. A.
,
1999
,
Wavelet Tour of Signal Processing
,
Academic Press
,
New York
.
55.
Bohler
,
U.
,
2000
,
Special Steel Manual, A-8605 Kapfenberg
,
Germany
,
90
98
.
56.
Vander
,
V.
, and
George
,
F.
,
1984
,
Metallography Principles and Practices
,
McGraw-Hill
,
New York
.
57.
Abouel-Kasem
,
A.
,
Abd-Elrhman
,
Y. M.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2010
, “
Design and Performance of Slurry Erosion Tester
,”
ASME J. Tribol.
,
132
(
2
), p.
021601
.
58.
Saleh
,
B.
, and
Ahmed
,
S. M.
,
2013
, “
Slurry Erosion–Corrosion of Carburized AISI 5117 Steel
,”
Tribol. Lett.
,
51
(
1
), pp.
135
142
.
59.
Abdelaal
,
O.
,
Heshmat
,
M.
, and
Abdelrhman
,
Y.
,
2020
, “
Experimental Investigation on the Effect of Water-Silica Slurry Impacts on 3D-Printed Polylactic Acid
,”
Tribol. Int.
,
151
, p.
106410
.
You do not currently have access to this content.