Abstract

As the need for higher efficiency of engineering components increases, so does the demand for functional surfaces. While various tribosurfaces (e.g., texturing and coatings) have been developed, many researches are aimed at static functionality. On the other hand, due to a wide range of environmental adaptability and active control, active-morphing surfaces can be highly efficient and robust. In this paper, we demonstrate a novel morphing surface and its realization using additive manufacturing (AM). By using a diaphragm structure, morphing performance is achieved even if a hard resin material is used. When air pressure is applied to the backside of the diaphragm, it changes to a convex shape and vice versa. The concept requires a complex structure for arranging airflow and a solid morphing system. The AM is one great technique to create such complex structures. As a result of actual manufacturing, the created morphing structure realizes a large morphing of 600 μm or more. In addition, the shape changes reversibly depending on the air pressure. The surface also exhibits very interesting tribological characteristics. The surface shows a friction coefficient of about 0.3 with a concavity, and then increases to 0.5–1.7 with a convexity. A real-contact area measurement reveals that the novel property occurs due to change in the real-contact area depending on surface morphology. In conclusion, the present paper provides a new concept of a novel morphing tribosurface, which selectively performs as a low-friction or break-like surface, created using AM.

References

1.
Öztürk
,
A.
,
Ezirmik
,
K. V.
,
Kazmanli
,
K.
,
Ürgen
,
M.
,
Eryilmaz
,
O. L.
, and
Erdemir
,
A.
,
2008
, “
Comparative Tribological Behaviors of TiN–, CrN– and MoN–Cu Nanocomposite Coatings
,”
Tribol. Int.
,
41
(
1
), pp.
49
59
. 10.1016/j.triboint.2007.04.008
2.
Fateh
,
N.
,
Fontalvo
,
G. A.
,
Gassner
,
G.
, and
Mitterer
,
C.
,
2007
, “
Influence of High-Temperature Oxide Formation on the Tribological Behaviour of TiN and VN Coatings
,”
Wear
,
262
(
9–10
), pp.
1152
1158
. 10.1016/j.wear.2006.11.006
3.
Haque
,
T.
,
Morina
,
A.
,
Neville
,
A.
, and
Arrowsmith
,
S.
,
2008
, “
Tribochemical Interactions of Friction Modifier and Antiwear Additives With CrN Coating Under Boundary Lubrication Conditions
,”
ASME J. Tribol.
,
130
(
4
), p.
042302
. 10.1115/1.2961808
4.
Shouyu
,
Z.
, and
Dejun
,
K.
,
2018
, “
Microstructures and Friction-Wear Behaviors of Cathodic Arc Ion Plated Chromium Nitride Coatings at High Temperatures
,”
ASME J. Tribol.
,
140
(
3
), p.
031602
. 10.1115/1.4038101
5.
Robertson
,
J.
,
2002
, “
Diamond-Like Amorphous Carbon
,”
Mater. Sci. Eng. R Rep.
,
37
(
4–6
), pp.
129
281
. 10.1016/S0927-796X(02)00005-0
6.
Vetter
,
J.
,
2014
, “
60years of DLC Coatings: Historical Highlights and Technical Review of Cathodic Arc Processes to Synthesize Various DLC Types, and Their Evolution for Industrial Applications
,”
Surf. Coat. Technol.
,
257
, pp.
213
240
. 10.1016/j.surfcoat.2014.08.017
7.
Erdemir
,
A.
,
2001
, “
The Role of Hydrogen in Tribological Properties of Diamond-Like Carbon Films
,”
Surf. Coat. Technol.
,
146–147
, pp.
292
297
. 10.1016/S0257-8972(01)01417-7
8.
Donnet
,
C.
, and
Grill
,
A.
,
1997
, “
Friction Control of Diamond-Like Carbon Coatings
,”
Surf. Coat. Technol.
,
94–95
, pp.
456
462
. 10.1016/S0257-8972(97)00275-2
9.
Aboua
,
K. A. M.
,
Umehara
,
N.
,
Kousaka
,
H.
,
Tokoroyama
,
T.
,
Murashima
,
M.
,
Mabuchi
,
Y.
,
Higuchi
,
T.
, and
Kawaguchi
,
M.
,
2018
, “
Effect of Carbon Diffusion on Friction and Wear Behaviors of Diamond-Like Carbon Coating Against Cr-Plating in Boundary Base Oil Lubrication
,”
Tribol. Online
,
13
(
5
), pp.
290
300
. 10.2474/trol.13.290
10.
Aboua
,
K. A. M.
,
Umehara
,
N.
,
Kousaka
,
H.
,
Tokoroyama
,
T.
,
Murashima
,
M.
,
Mustafa
,
M. M. B.
,
Mabuchi
,
Y.
,
Higuchi
,
T.
, and
Kawaguchi
,
M.
,
2020
, “
Effect of Mating Material and Graphitization on Wear of A-C:H Coating in Boundary Base Oil Lubrication
,”
Tribol. Lett.
,
68
(
1
), pp.
1
8
. 10.1007/s11249-019-1243-y
11.
Wang
,
D. Y.
,
Chang
,
C. L.
, and
Ho
,
W. Y.
,
1999
, “
Oxidation Behavior of Diamond-Like Carbon Films
,”
Surf. Coat. Technol.
,
120–121
, pp.
138
144
. 10.1016/S0257-8972(99)00350-3
12.
Murashima
,
M.
,
Deng
,
X.
,
Izuoka
,
H.
,
Umehara
,
N.
, and
Kousaka
,
H.
,
2019
, “
Effect of Oxygen on Degradation of Defects on Ta-C Coatings Deposited by Filtered Arc Deposition
,”
Surf. Coat. Technol.
,
362
, pp.
200
207
. 10.1016/j.surfcoat.2019.01.115
13.
Li
,
H.
,
Xu
,
T.
,
Wang
,
C.
,
Chen
,
J.
,
Zhou
,
H.
, and
Liu
,
H.
,
2006
, “
Annealing Effect on the Structure, Mechanical and Tribological Properties of Hydrogenated Diamond-Like Carbon Films
,”
Thin Solid Films
,
515
(
4
), pp.
2153
2160
. 10.1016/j.tsf.2006.04.018
14.
Manimunda
,
P.
,
Al-Azizi
,
A.
,
Kim
,
S. H.
, and
Chromik
,
R. R.
,
2017
, “
Shear-Induced Structural Changes and Origin of Ultralow Friction of Hydrogenated Diamond-Like Carbon (DLC) in Dry Environment
,”
ACS Appl. Mater. Interfaces
,
9
(
19
), pp.
16704
16714
. 10.1021/acsami.7b03360
15.
Liu
,
X.
,
Yamaguchi
,
R.
,
Umehara
,
N.
,
Murashima
,
M.
, and
Tokoroyama
,
T.
,
2017
, “
Effect of Oil Temperature and Counterpart Material on the Wear Mechanism of Ta-CNx Coating Under Base Oil Lubrication
,”
Wear
,
390–391
, pp.
312
321
. 10.1016/j.wear.2017.08.012
16.
Liu
,
X.
,
Umehara
,
N.
,
Tokoroyama
,
T.
, and
Murashima
,
M.
,
2019
, “
Tribological Properties of Ta-CNx Coating Sliding Against Steel and Sapphire in Unlubricated Condition
,”
Tribol. Int.
,
131
, pp.
102
111
. 10.1016/j.triboint.2018.10.022
17.
Erdemir
,
A.
,
2005
, “
Review of Engineered Tribological Interfaces for Improved Boundary Lubrication
,”
Tribol. Int.
,
38
(
3
), pp.
249
256
. 10.1016/j.triboint.2004.08.008
18.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
. 10.1007/s11249-004-8081-1
19.
Shafiei
,
M.
, and
Alpas
,
A. T.
,
2009
, “
Nanocrystalline Nickel Films With Lotus Leaf Texture for Superhydrophobic and Low Friction Surfaces
,”
Appl. Surf. Sci.
,
256
(
3
), pp.
710
719
. 10.1016/j.apsusc.2009.08.047
20.
Ellinas
,
K.
,
Pujari
,
S. P.
,
Dragatogiannis
,
D. A.
,
Charitidis
,
C. A.
,
Tserepi
,
A.
,
Zuilhof
,
H.
, and
Gogolides
,
E.
,
2014
, “
Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces With Perfluorinated Monolayers
,”
ACS Appl. Mater. Interfaces
,
6
(
9
), pp.
6510
6524
. 10.1021/am5000432
21.
Murashima
,
M.
,
Umehara
,
N.
, and
Kousaka
,
H.
,
2016
, “
Effect of Nano-Texturing on Adhesion of Thermoplastic Resin Against Textured Steel Plate
,”
Tribol. Online
,
11
(
2
), pp.
159
167
. 10.2474/trol.11.159
22.
Holmberg
,
K.
,
Kivikytö-Reponen
,
P.
,
Härkisaari
,
P.
,
Valtonen
,
K.
, and
Erdemir
,
A.
,
2017
, “
Global Energy Consumption Due to Friction and Wear in the Mining Industry
,”
Tribol. Int.
,
115
, pp.
116
139
. 10.1016/j.triboint.2017.05.010
23.
Holmberg
,
K.
,
Andersson
,
P.
, and
Erdemir
,
A.
,
2012
, “
Global Energy Consumption Due to Friction in Passenger Cars
,”
Tribol. Int.
,
47
, pp.
221
234
. 10.1016/j.triboint.2011.11.022
24.
Etsion
,
I.
, and
Sher
,
E.
,
2009
, “
Improving Fuel Efficiency With Laser Surface Textured Piston Rings
,”
Tribol. Int.
,
42
(
4
), pp.
542
547
. 10.1016/j.triboint.2008.02.015
25.
Borghi
,
A.
,
Gualtieri
,
E.
,
Marchetto
,
D.
,
Moretti
,
L.
, and
Valeri
,
S.
,
2008
, “
Tribological Effects of Surface Texturing on Nitriding Steel for High-Performance Engine Applications
,”
Wear
,
265
(
7–8
), pp.
1046
1051
. 10.1016/j.wear.2008.02.011
26.
Yu
,
H.
,
Wang
,
X.
, and
Zhou
,
F.
,
2010
, “
Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces
,”
Tribol. Lett.
,
37
(
2
), pp.
123
130
. 10.1007/s11249-009-9497-4
27.
Pilkington
,
G. A.
,
Harris
,
K.
,
Bergendal
,
E.
,
Reddy
,
A. B.
,
Palsson
,
G. K.
,
Vorobiev
,
A.
,
Antzutkin
,
O. N.
,
Glavatskih
,
S.
, and
Rutland
,
M. W.
,
2018
, “
Electro-Responsivity of Ionic Liquid Boundary Layers in a Polar Solvent Revealed by Neutron Reflectance
,”
J. Chem. Phys.
,
148
(
19
), p.
193806
. 10.1063/1.5001551
28.
Hjalmarsson
,
N.
,
Bergendal
,
E.
,
Wang
,
Y. L.
,
Munavirov
,
B.
,
Wallinder
,
D.
,
Glavatskih
,
S.
,
Aastrup
,
T.
,
Atkin
,
R.
,
Furó
,
I.
, and
Rutland
,
M. W.
,
2019
, “
Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil
,”
Langmuir
,
35
(
48
), pp.
15692
15700
. 10.1021/acs.langmuir.9b02119
29.
Murashima
,
M.
,
Umehara
,
N.
,
Kousaka
,
H.
, and
Deng
,
X.
,
2017
, “
Effect of Electric Field on Adhesion of Thermoplastic Resin Against Steel Plate
,”
Tribol. Online
,
12
(
2
), pp.
42
48
. 10.2474/trol.12.42
30.
Bin Taib
,
M. T.
,
Umehara
,
N.
,
Tokoroyama
,
T.
, and
Murashima
,
M.
,
2018
, “
The Effect of UV Irradiation to A-C:H on Friction and Wear Properties Under PAO Oil Lubrication Including MoDTC and ZnDTP
,”
Tribol. Online
,
13
(
3
), pp.
119
130
. 10.2474/trol.13.119
31.
Tucker
,
B. Y. V. A.
, and
Parrott
,
G. C.
,
1970
, “
Aerodynamics of Gliding Flight in a Falcon and Other Birds
,”
J. Exp. Biol.
,
52
(
2
), pp.
345
367
.
32.
Weisshaar
,
T. A.
,
2013
, “
Morphing Aircraft Systems: Historical Perspectives and Future Challenges
,”
J. Aircr.
,
50
(
2
), pp.
337
353
. 10.2514/1.C031456
33.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
823
877
. 10.1177/1045389X11414084
34.
Meguid
,
S. A.
,
Su
,
Y.
, and
Wang
,
Y.
,
2017
, “
Complete Morphing Wing Design Using Flexible-Rib System
,”
Int. J. Mech. Mater. Des.
,
13
(
1
), pp.
159
171
. 10.1007/s10999-015-9323-0
35.
Thill
,
C.
,
Etches
,
J. A.
,
Bond
,
I. P.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2010
, “
Composite Corrugated Structures for Morphing Wing Skin Applications
,”
Smart Mater. Struct.
,
19
(
12
), p.
124009
. 10.1088/0964-1726/19/12/124009
36.
Bifano
,
T. G.
,
Perreault
,
J.
,
Krishnamoorthy Mali
,
R.
, and
Horenstein
,
M. N.
,
1999
, “
Microelectromechanical Deformable Mirrors
,”
IEEE J. Sel. Top. Quantum Electron.
,
5
(
1
), pp.
83
89
. 10.1109/2944.748109
37.
Zeek
,
E.
,
Maginnis
,
K.
,
Backus
,
S.
,
Russek
,
U.
,
Murnane
,
M.
,
Mourou
,
G.
,
Kapteyn
,
H.
, and
Vdovin
,
G.
,
1999
, “
Pulse Compression by Use of Deformable Mirrors
,”
Opt. Lett.
,
24
(
7
), p.
493
. 10.1364/OL.24.000493
38.
Sherman
,
L.
,
Ye
,
J. Y.
,
Albert
,
O.
, and
Norris
,
T. B.
,
2002
, “
Adaptive Correction of Depth-Induced Aberrations in Multiphoton Scanning Microscopy Using a Deformable Mirror
,”
J. Microsc.
,
206
(
1
), pp.
65
71
. 10.1046/j.1365-2818.2002.01004.x
39.
Ohzono
,
T.
,
Watanabe
,
H.
,
Vendamme
,
R.
,
Kamaga
,
C.
,
Kunitake
,
T.
,
Ishihara
,
T.
, and
Shimomura
,
M.
,
2007
, “
Spatial Forcing of Self-Organized Microwrinkles by Periodic Nanopatterns
,”
Adv. Mater.
,
19
(
20
), pp.
3229
3232
. 10.1002/adma.200700618
40.
Ohzono
,
T.
, and
Shimomura
,
M.
,
2005
, “
Geometry-Dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns
,”
Langmuir
,
21
(
16
), pp.
7230
7237
. 10.1021/la0503449
41.
Suzuki
,
K.
, and
Ohzono
,
T.
,
2016
, “
Wrinkles on a Textile-Embedded Elastomer Surface With Highly Variable Friction
,”
Soft Matter
,
12
(
29
), pp.
6176
6183
. 10.1039/C6SM00728G
42.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Tribological Performance of Selective Laser Melted 316L Stainless Steel
,”
Tribol. Int.
,
128
, pp.
121
129
. 10.1016/j.triboint.2018.07.021
43.
Cai
,
C.
,
Radoslaw
,
C.
,
Zhang
,
J.
,
Yan
,
Q.
,
Wen
,
S.
,
Song
,
B.
, and
Shi
,
Y.
,
2019
, “
In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior
,”
Powder Technol.
,
342
, pp.
73
84
. 10.1016/j.powtec.2018.09.088
44.
Chandramohan
,
P.
,
Bhero
,
S.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2017
, “
Laser Additive Manufactured Ti–6Al–4 V Alloy: Tribology and Corrosion Studies
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
3051
3061
. 10.1007/s00170-017-0410-2
45.
Murashima
,
M.
,
Yoshino
,
S.
,
Kawaguchi
,
M.
, and
Umehara
,
N.
,
2019
, “
Intelligent Tribological Surfaces: From Concept to Realization Using Additive Manufacturing
,”
Int. J. Mech. Mater. Des.
,
15
(
4
), pp.
757
766
. 10.1007/s10999-018-9435-4
46.
Murashima
,
M.
,
Imaizumi
,
Y.
,
Murase
,
R.
,
Umehara
,
N.
,
Tokoroyama
,
T.
,
Saito
,
T.
, and
Takeshima
,
M.
,
2021
, “
Active Friction Control in Lubrication Condition Using Novel Metal Morphing Surface
,”
Tribol. Int.
,
156
, p.
106827
. 10.1016/j.triboint.2020.106827
47.
Nitta
,
I.
,
Matsuzaki
,
Y.
,
Tsukiyama
,
Y.
,
Horita
,
M.
, and
Sakamoto
,
S.
,
2013
, “
Thorough Observation of Real Contact Area of Copper Gaskets Using a Laser Microscope With a Wide Field of View
,”
ASME J. Tribol.
,
135
(
4
), p.
041103
. 10.1115/1.4024781
48.
Nitta
,
I.
,
Tsukiyama
,
Y.
,
Tsukada
,
T.
, and
Terao
,
H.
,
2013
, “
Evaluation of Tribological Properties of Pick up Roller Measured Using a Laser Microscope With a Wide Field of View
,”
Tribol. Int.
,
67
, pp.
182
190
. 10.1016/j.triboint.2013.07.014
49.
Irii
,
T.
,
Kou
,
M.
,
Tsukiyama
,
Y.
,
Nitta
,
I.
,
Wauke
,
T.
, and
Terao
,
H.
,
2018
, “
Visualization of Contact Patterns of Thermal Printhead for Indirect Thermal Transfer Printing
,”
J. Adv. Mech. Des. Syst. Manuf.
,
12
(
2
), pp.
1
16
. 10.1299/jamdsm.2018jamdsm0048
50.
Li
,
S.
,
Yuan
,
S.
,
Zhu
,
J.
,
Wang
,
C.
,
Li
,
J.
, and
Zhang
,
W.
,
2020
, “
Additive Manufacturing-Driven Design Optimization: Building Direction and Structural Topology
,”
Addit. Manuf.
,
36
, p.
101406
. 10.1016/j.addma.2020.101406
51.
Blanco
,
D.
,
Fernandez
,
P.
, and
Noriega
,
A.
,
2014
, “
Nonisotropic Experimental Characterization of the Relaxation Modulus for PolyJet Manufactured Parts
,”
J. Mater. Res.
,
29
(
17
), pp.
1876
1882
. 10.1557/jmr.2014.200
You do not currently have access to this content.