Abstract

Based on the coordinate transformation method, the generalized turbulent lubrication equation considering the axial motion of the journal is derived. The finite-difference method is used to solve the generalized turbulent lubrication equation. The variations of turbulent lubrication performance with axial displacement for different axial movement velocity of the journal, journal misalignment angle, and initial mid-plane eccentricity ratio are obtained. The results show that when the axial movement velocity of the journal increases, the mid-plane eccentricity ratio of the bearing and the minimum film thickness remain unchanged, the average Reynolds number, maximum film pressure, load capacity, frictional power, and side leakage increases. As the axial displacement of the journal increases, the greater the misalignment angle of the journal, the greater the degree of misalignment, maximum film pressure, load capacity, and misalignment moment of the bearing. The greater the initial mid-plane eccentricity ratio, the greater the degree of journal misalignment, maximum film pressure, load capacity, frictional power, and misalignment moment.

References

1.
Zhang
,
Y.
,
Hei
,
D.
,
Liu
,
C.
,
Guo
,
B.
,
Lu
,
Y.
, and
Müller
,
N.
,
2018
, “
An Approximate Solution of Oil Film Forces of Turbulent Finite Length Journal Bearing
,”
Tribol. Int.
,
74
, pp.
110
120
. 10.1016/j.triboint.2014.02.015
2.
Pinkus
,
O.
, and
Bupara
,
S. S.
,
1979
, “
Analysis of Misaligned Grooved Journal Bearings
,”
ASME J. Lubr. Tech.
,
101
(
4
), pp.
503
509
. 10.1115/1.3453402
3.
Mokhtar
,
M. O. A.
,
Safar
,
Z. S.
, and
Abd-El-Rahman
,
M. A. M.
,
1985
, “
An Adiabatic Solution of Misaligned Journal Bearings
,”
ASME J. Tribol.
,
107
(
2
), pp.
263
267
. 10.1115/1.3261041
4.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
Analysis of a Finite Grooved Misaligned Journal Bearing Considering Cavitation and Starvation Effects
,”
ASME J. Tribol.
,
112
(
1
), pp.
60
67
. 10.1115/1.2920231
5.
Guha
,
S. K.
,
2000
, “
Analysis of Steady-State Characteristics of Misaligned Hydrodynamic Journal Bearings With Isotropic Roughness Effect
,”
Tribol. Int.
,
33
(
1
), pp.
1
12
. 10.1016/S0301-679X(00)00005-0
6.
Mallya
,
R.
,
Shenoy
,
S. B.
, and
Pai
,
R.
,
2015
, “
Steady State Characteristics of Misaligned Multiple Axial Groove Water-Lubricated Journal Bearing
,”
Proc. IME. J. J. Eng. Tribol.
,
229
(
6
), pp.
712
722
. 10.1177/1350650114560833
7.
Xu
,
G.
,
Zhou
,
J.
,
Geng
,
H.
,
Lu
,
M.
,
Yang
,
L.
, and
Yu
,
L.
,
2015
, “
Research on the Static and Dynamic Characteristics of Misaligned Journal Bearing Considering the Turbulent and Thermohydrodynamic Effects
,”
ASME J. Tribol.
,
137
(
2
), p.
024504
. 10.1115/1.4029333
8.
Ren
,
T.
, and
Feng
,
M.
,
2016
, “
Stability Analysis of Water-Lubricated Journal Bearings for Fuel Cell Vehicle Air Compressor
,”
Tribol. Int.
,
95
, pp.
342
348
. 10.1016/j.triboint.2015.11.029
9.
Mallya
,
R.
,
Shenoy
,
S. B.
, and
Pai
,
R.
,
2017
, “
Static Characteristics of Misaligned Multiple Axial Groove Water-Lubricated Bearing in the Turbulent Regime
,”
Proc. IME. J. J. Eng. Tribol.
,
231
(
3
), pp.
385
398
. 10.1177/1350650116657757
10.
Feng
,
H.
, and
Jiang
,
S.
,
2017
, “
Dynamics of a Motorized Spindle Supported on Water-Lubricated Bearings
,”
Proc. IME. C. J. Mech. Eng. Sci.
,
231
(
3
), pp.
459
472
. 10.1177/0954406215616653
11.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
. 10.1016/j.triboint.2018.09.007
12.
Song
,
Z.
,
Guo
,
F.
,
Liu
,
Y.
,
Liu
,
X.
, and
Wang
,
Y.
,
2018
, “
Inertia Effect on the Load Capacity of Large Water-Lubricated Thrust Bearing
,”
Tribol. Trans.
,
61
(
1
), pp.
111
121
. 10.1080/10402004.2016.1275904
13.
Hashimoto
,
H.
,
1997
, “
Surface Roughness Effects in High-Speed Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
119
(
4
), pp.
776
780
. 10.1115/1.2833884
14.
Zhang
,
C.
,
Yi
,
Z.
, and
Zhang
,
Z.
,
2000
, “
THD Analysis of High Speed Heavily Loaded Journal Bearings Including Thermal Deformation, Mass Conserving Cavitation, and Turbulent Effects
,”
ASME J. Tribol.
,
122
(
3
), pp.
597
602
. 10.1115/1.555407
15.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
, and
Zhu
,
G.
,
2019
, “
Stochastic Models for Turbulent Lubrication of Bearing With Rough Surfaces
,”
Tribol. Int.
,
136
, pp.
224
233
. 10.1016/j.triboint.2019.03.063
16.
Lv
,
F.
,
Jiao
,
C.
,
Ta
,
N.
, and
Rao
,
Z.
,
2018
, “
Mixed-Lubrication Analysis of Misaligned Bearing Considering Turbulence
,”
Tribol. Int.
,
119
, pp.
19
26
. 10.1016/j.triboint.2017.10.030
17.
Soni
,
S.
, and
Vakharia
,
D. P.
,
2017
, “
Performance Analysis of a Finite Noncircular Floating Ring Bearing in Turbulent Flow Regime
,”
Proc. IME. J. J. Eng. Tribol.
,
231
(
7
), pp.
869
888
. 10.1177/1350650116682656
18.
Okabe
,
E. P.
,
2017
, “
Analytical Model of a Tilting Pad Bearing Including Turbulence and Fluid Inertia Effects
,”
Tribol. Int.
,
114
, pp.
245
256
. 10.1016/j.triboint.2017.04.030
19.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High-Speed Water-Lubricated Spiral Groove Thrust Bearing Using Cavitating Flow Model
,”
ASME J. Tribol.
,
140
(
5
), p.
051703
. 10.1115/1.4039959
20.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
. 10.1016/j.triboint.2017.11.037
21.
Miraskari
,
M.
,
Hemmati
,
F.
,
Alqaradawi
,
M.
, and
Gadala
,
M. S.
,
2017
, “
Linear Stability Analysis of Finite Length Journal Bearings in Laminar and Turbulent Regimes
,”
Proc. IME. J. J. Eng. Tribol.
,
231
(
10
), pp.
1254
1267
. 10.1177/1350650117691697
22.
Shenoy
,
B. S.
, and
Pai
,
R.
,
2010
, “
Stability Characteristics of an Externally Adjustable Fluid Film Bearing in the Laminar and Turbulent Regimes
,”
Tribol. Int.
,
43
(
9
), pp.
1751
1759
. 10.1016/j.triboint.2010.04.015
23.
Han
,
Y.
,
Chan
,
C.
,
Wang
,
Z.
,
Shi
,
F.
,
Wang
,
J.
,
Wang
,
N.
, and
Wang
,
Q. J.
,
2015
, “
Effects of Shaft Axial Motion and Misalignment on the Lubrication Performance of Journal Bearings Via a Fast Mixed EHL Computing Technology
,”
Tribol. Trans.
,
58
(
2
), pp.
247
259
. 10.1080/10402004.2014.962207
24.
Xiang
,
G.
,
Han
,
Y.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2019
, “
A Transient Hydrodynamic Lubrication Comparative Analysis for Misaligned Micro-Grooved Bearing Considering Axial Reciprocating Movement of Shaft
,”
Tribol. Int.
,
132
, pp.
11
23
. 10.1016/j.triboint.2018.12.004
25.
Li
,
B.
,
Sun
,
J.
,
Zhu
,
S.
,
Fu
,
Y.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
,
Li
,
Y.
, and
Zhu
,
G.
,
2019
, “
Thermohydrodynamic Lubrication Analysis of Misaligned Journal Bearing Considering the Axial Movement of Journal
,”
Tribol. Int.
,
135
, pp.
397
407
. 10.1016/j.triboint.2019.03.031
26.
Taylor
,
C. M.
, and
Dowson
,
D.
,
1974
, “
Turbulent Lubrication Theory—Application to Design
,”
ASME J. Lubr. Tech.
,
96
(
1
), pp.
36
46
. 10.1115/1.3451905
27.
Wang
,
X.
,
Zhang
,
Z.
, and
Sun
,
M.
,
2000
, “
A Comparison of Flow Fields Predicted by Various Turbulent Lubrication Models with Existing Measurements
,”
ASME J. Tribol.
,
122
(
2
), pp.
475
477
. 10.1115/1.555390
28.
Hori
,
Y.
,
2006
,
Hydrodynamic Lubrication
,
Springer
,
Hicom, Japan
.
29.
Frene
,
J.
,
Arghir
,
M.
, and
Constantinescu
,
V.
,
2006
, “
Combined Thin-Film and Navier–Stokes Analysis in High Reynolds Number Lubrication
,”
Tribol. Int.
,
39
(
8
), pp.
734
747
. 10.1016/j.triboint.2005.07.004
You do not currently have access to this content.