Abstract

To explore the potential of directly grown multi-layer graphene as an agent in reducing friction and wear of steel on steel tribo-pair, multi-layer graphene films were synthesized on GCr15 steel in a low-pressure chemical vapor deposition (LPCVD) setup using a gaseous mixture of acetylene and hydrogen onto a bearing steel substrate. An interlayer of electroplated nickel was deposited on steel to assist and accelerate the graphene deposition. The tribological performance was evaluated using a ball-on-disc tribometer with an average Hertzian pressure of 0.2, 0.28, 0.34, and 0.42 GPa over a stroke length of 5 mm against GCr15 steel ball and compared with bare steel and nickel-plated steel. The results indicate that the friction coefficient is dependent on the applied load and decrease with increasing load, and the minimum friction coefficient of ∼0.13 was obtained for an applied normal load of 1 N; however, the coating failed after 250 cycles. The decrease in friction coefficient has been attributed to the homogenization of the deposited multi-layer graphene along the sliding direction and transfer of graphene to counter-face ball leading to inhibition of metal-metal contact. The investigation suggests that this kind of coating has the potential of improving the tribological performance of metal-metal tribo-pairs.

References

1.
Geim
,
A. K.
,
2009
, “
Graphene: Status and Prospects
,”
Science
,
324
(
5934
), pp.
1530
1534
. 10.1126/science.1158877
2.
Bhowmick
,
S.
,
Banerji
,
A.
, and
Alpas
,
A. T.
,
2015
, “
Role of Humidity in Reducing Sliding Friction of Multilayered Graphene
,”
Carbon
,
87
, pp.
374
384
. 10.1016/j.carbon.2015.01.053
3.
Xu
,
S.
,
Liu
,
Y.
,
Gao
,
M.
,
Kang
,
K. H.
,
Kim
,
C. L.
, and
Kim
,
D. E.
,
2018
, “
Selective Release of Less Defective Graphene During Sliding of an Incompletely Reduced Graphene Oxide Coating on Steel
,”
Carbon
,
134
, pp.
411
422
. 10.1016/j.carbon.2018.04.022
4.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
. 10.1016/j.carbon.2012.11.061
5.
Ye
,
X.
,
Lin
,
Z.
,
Zhang
,
H.
,
Zhu
,
H.
,
Liu
,
Z.
, and
Zhong
,
M.
,
2015
, “
Protecting Carbon Steel From Corrosion by Laser In Situ Grown Graphene Films
,”
Carbon
,
94
, pp.
326
334
. 10.1016/j.carbon.2015.06.080
6.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science
,
324
(
5932
), pp.
1312
1314
. 10.1126/science.1171245
7.
Huang
,
L.
,
Chang
,
Q. H.
,
Guo
,
G. L.
,
Liu
,
Y.
,
Xie
,
Y. Q.
,
Wang
,
T.
,
Ling
,
B.
, and
Yang
,
H. F.
,
2012
, “
Synthesis of High-Quality Graphene Films on Nickel Foils by Rapid Thermal Chemical Vapor Deposition
,”
Carbon
,
50
(
2
), pp.
551
556
. 10.1016/j.carbon.2011.09.012
8.
Vlassiouk
,
I.
,
Fulvio
,
P.
,
Meyer
,
H.
,
Lavrik
,
N.
,
Dai
,
S.
,
Datskos
,
P.
, and
Smirnov
,
S.
,
2013
, “
Large Scale Atmospheric Pressure Chemical Vapor Deposition of Graphene
,”
Carbon
,
54
, pp.
58
67
. 10.1016/j.carbon.2012.11.003
9.
Li
,
X.
,
Magnuson
,
C. W.
,
Venugopal
,
A.
,
Tromp
,
R. M.
,
Hannon
,
J. B.
,
Vogel
,
E. M.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2011
, “
Large-area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper
,”
J. Am. Chem. Soc.
,
133
(
9
), pp.
2816
2819
. 10.1021/ja109793s
10.
Mueller
,
N. S.
,
Morfa
,
A. J.
,
Abou-Ras
,
D.
,
Oddone
,
V.
,
Ciuk
,
T.
, and
Giersig
,
M.
,
2014
, “
Growing Graphene on Polycrystalline Copper Foils by Ultra-High Vacuum Chemical Vapor Deposition
,”
Carbon
,
78
, pp.
347
355
. 10.1016/j.carbon.2014.07.011
11.
Batzill
,
M.
,
2012
, “
The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects
,”
Surf. Sci. Rep.
,
67
(
3–4
), pp.
83
115
. 10.1016/j.surfrep.2011.12.001
12.
Wintterlin
,
J.
, and
Bocquet
,
M.-L.
,
2009
, “
Graphene on Metal Surfaces
,”
Surf. Sci.
,
603
(
10–12
), pp.
1841
1852
. 10.1016/j.susc.2008.08.037
13.
Li
,
X.
,
Cai
,
W.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling
,”
Nano Lett.
,
9
(
12
), pp.
4268
4272
. 10.1021/nl902515k
14.
Yu
,
Q.
,
Lian
,
J.
,
Siriponglert
,
S.
,
Li
,
H.
,
Chen
,
Y. P.
, and
Pei
,
S. S.
,
2008
, “
Graphene Segregated on Ni Surfaces and Transferred to Insulators
,”
Appl. Phys. Lett.
,
93
(
11
), p.
113103
. 10.1063/1.2982585
15.
Reina
,
A.
,
Jia
,
X.
,
Ho
,
J.
,
Nezich
,
D.
,
Son
,
H.
,
Bulovic
,
V.
,
Dresselhaus
,
M. S.
, and
Kong
,
J.
,
2009
, “
Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
,”
Nano Lett.
,
9
(
1
), pp.
30
35
. 10.1021/nl801827v
16.
Baraton
,
L.
,
He
,
Z. B.
,
Lee
,
C. S.
,
Cojocaru
,
C. S.
,
Châtelet
,
M.
,
Maurice
,
J. L.
,
Lee
,
Y. H.
, and
Pribat
,
D.
,
2011
, “
On the Mechanisms of Precipitation of Graphene on Nickel Thin Films
,”
EPL
,
96
(
4
), p.
46003
. 10.1209/0295-5075/96/46003
17.
Yang
,
M.
,
Sasaki
,
S.
,
Suzuki
,
K.
, and
Miura
,
H.
,
2016
, “
Control of the Nucleation and Quality of Graphene Grown by Low-Pressure Chemical Vapor Deposition With Acetylene
,”
Appl. Surf. Sci.
,
366
, pp.
219
226
. 10.1016/j.apsusc.2016.01.089
18.
Pu
,
N.-W.
,
Shi
,
G.-N.
,
Liu
,
Y.-M.
,
Sun
,
X.
,
Chang
,
J.-K.
,
Sun
,
C.-L.
,
Ger
,
M.-D.
,
Chen
,
C.-Y.
,
Wang
,
P.-C.
,
Peng
,
Y.-Y.
,
Wu
,
C.-H.
, and
Lawes
,
S.
,
2015
, “
Graphene Grown on Stainless Steel as a High-Performance and Ecofriendly Anti-Corrosion Coating for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates
,”
J. Power Sources
,
282
, pp.
248
256
. 10.1016/j.jpowsour.2015.02.055
19.
Stoot
,
A. C.
,
Camilli
,
L.
,
Spiegelhauer
,
S.-A.
,
Yu
,
F.
, and
Bøggild
,
P.
,
2015
, “
Multilayer Graphene for Long-Term Corrosion Protection of Stainless Steel Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
293
, pp.
846
851
. 10.1016/j.jpowsour.2015.06.009
20.
Zhai
,
W.
,
Srikanth
,
N.
,
Kong
,
L. B.
, and
Zhou
,
K.
,
2017
, “
Carbon Nanomaterials in Tribology
,”
Carbon
,
119
, pp.
150
171
. 10.1016/j.carbon.2017.04.027
21.
Restuccia
,
P.
, and
Righi
,
M. C.
,
2016
, “
Tribochemistry of Graphene on Iron and Its Possible Role in Lubrication of Steel
,”
Carbon
,
106
, pp.
118
124
. 10.1016/j.carbon.2016.05.025
22.
Kim
,
H. J.
,
Penkov
,
O. V.
, and
Kim
,
D. E.
,
2015
, “
Tribological Properties of Graphene Oxide Nanosheet Coating Fabricated by Using Electrodynamic Spraying Process
,”
Tribol. Lett.
,
57
(
3
), p.
27
. 10.1007/s11249-015-0467-8
23.
Romani
,
E. C.
,
Larrude
,
D. G.
,
Nachez
,
L.
,
Vilani
,
C.
,
de Campos
,
J. B.
,
Peripolli
,
S. B.
, and
Freire
,
F. L.
,
2017
, “
Graphene Grown by Chemical Vapour Deposition on Steel Substrates: Friction Behavior
,”
Tribol. Lett.
,
65
(
3
), p.
96
. 10.1007/s11249-017-0879-8
24.
Hong
,
H.
,
Chen
,
S.
,
Chen
,
X.
,
Zhang
,
Z.
, and
Shen
,
B.
,
2018
, “
Study on the Friction Reducing Effect of Graphene Coating Prepared by Electrophoretic Deposition
,”
Proc. CIRP
,
71
, pp.
335
340
. 10.1016/j.procir.2018.05.037
25.
Singh
,
S.
,
Chen
,
X.
,
Zhang
,
C.
,
Gautam
,
R. K.
,
Tyagi
,
R.
, and
Luo
,
J.
,
2020
, “
Nickel-catalyzed Direct Growth of Graphene on Bearing Steel (GCr15) by Thermal Chemical Vapor Deposition and Its Tribological Behavior
,”
Appl. Surf. Sci.
,
502
, p.
144135
. 10.1016/j.apsusc.2019.144135
26.
Chen
,
C. S.
, and
Hsieh
,
C. K.
,
2015
, “
Effects of Acetylene Flow Rate and Processing Temperature on Graphene Films Grown by Thermal Chemical Vapor Deposition
,”
Thin Solid Films
,
584
, pp.
265
269
. 10.1016/j.tsf.2014.12.012
27.
Lavin-Lopez
,
M. P.
,
Valverde
,
J. L.
,
Ruiz-Enrique
,
M. I.
,
Sanchez-Silva
,
L.
, and
Romero
,
A.
,
2015
, “
Thickness Control of Graphene Deposited Over Polycrystalline Nickel
,”
New J. Chem.
,
39
(
6
), pp.
4414
4423
. 10.1039/C5NJ00073D
28.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
. 10.1103/physrevlett.97.187401
29.
Nanda
,
S. S.
,
Kim
,
M. J.
,
Yeom
,
K. S.
,
An
,
S. S. A.
,
Ju
,
H.
, and
Yi
,
D. K.
,
2016
, “
Raman Spectrum of Graphene With Its Versatile Future Perspectives
,”
TrAC, Trends Anal. Chem.
,
80
, pp.
125
131
. 10.1016/j.trac.2016.02.024
30.
Wang
,
X.
,
You
,
H.
,
Liu
,
F.
,
Li
,
M.
,
Wan
,
L.
,
Li
,
S.
,
Li
,
Q.
,
Xu
,
Y.
,
Tian
,
R.
,
Yu
,
Z.
,
Xiang
,
D.
, and
Cheng
,
J.
,
2009
, “
Large-Scale Synthesis of Few-Layered Graphene Using CVD
,”
Chem. Vap. Deposition
,
15
(
1–3
), pp.
53
56
. 10.1002/cvde.200806737
31.
Ago
,
H.
,
Kugler
,
T.
,
Cacialli
,
F.
,
Salaneck
,
W. R.
,
Shaffer
,
M. S.
,
Windle
,
A. H.
, and
Friend
,
R. H.
,
1999
, “
Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes
,”
J. Phys. Chem. B
,
103
(
38
), pp.
8116
8121
. 10.1021/jp991659y
32.
Torgerson
,
T. B.
,
Harris
,
M. D.
,
Alidokht
,
S. A.
,
Scharf
,
T. W.
,
Aouadi
,
S. M.
,
Chromik
,
R. R.
,
Zabinski
,
J. S.
, and
Voevodin
,
A. A.
,
2018
, “
Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings
,”
Surf. Coat. Technol.
,
350
, pp.
136
145
. 10.1016/j.surfcoat.2018.05.090
33.
Zheng
,
D.
,
Cai
,
Z. B.
,
Shen
,
M. X.
,
Li
,
Z. Y.
, and
Zhu
,
M. H.
,
2016
, “
Investigation of the Tribology Behaviour of the Graphene Nanosheets as Oil Additives on Textured Alloy Cast Iron Surface
,”
Appl. Surf. Sci.
,
387
, pp.
66
75
. 10.1016/j.apsusc.2016.06.080
You do not currently have access to this content.