The quality of predictions for the operating behavior of high-speed journal bearings strongly depends on realistic boundary conditions within the inlet region supplying a mixture of hot oil from the upstream pad and fresh lubricant from the inlet device to the downstream located pad. Therefore, an appropriate modeling of fundamental phenomena within the inlet region is essential for a reliable simulation of fluid and heat flow in the entire bearing. A theoretical model including hydraulic, mechanical, and energetic effects and the procedure of its numerical implementation in typical bearing codes for thermo-hydrodynamic lubrication is described and validated. Convective and conductive heat transfer as well as dissipation due to internal friction in the lubricant is considered for the space between pads or the pocket where the inlet is located. In contrast to most other models, the region between the physical inlet and the lubricant film is part of the solution domain and not only represented by boundary conditions. The model provides flow rate and temperature boundary conditions for extended Reynolds equation and a three-dimensional (3D) energy equation of film and inlet region, respectively. The impact of backflow from the inlet region to the outer supply channel possibly occurring in sealed pockets is taken into account. Moreover, the model considers the influence of turbulent flow in the inlet region.

References

1.
Heshmat
,
H.
, and
Pinkus
,
O.
,
1986
, “
Mixing Inlet Temperatures in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
231
244
.
2.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
,
1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearing
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
414
420
.
3.
Nicholas
,
J. C.
,
2003
, “
Tilting Pad Journal Bearings With Spray-Bar Blockers and By-Pass Cooling for High Speed, High Load Applications
,”
32nd Turbomachinery Symposium,
College Station, TX, Sept. pp.
9
11
.
4.
Kosasih
,
P. B.
, and
Tieu
,
A. K.
,
2004
, “
An Investigation Into the Thermal Mixing in Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
218
(
5
), pp.
379
389
.
5.
Uhkoetter
,
S.
,
der Wiesche
,
S. A.
,
Kursch
,
M.
, and
Beck
,
C.
,
2012
, “
Development and Validation of a Three-Dimensional Multiphase Flow Computational Fluid Dynamics Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102504
.
6.
Hagemann
,
T.
,
Zeh
,
C.
,
Prölß
,
M.
, and
Schwarze
,
H.
,
2017
, “
The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings
,”
Int. J. Rotating Mach.
,
2017
, p. 12.
7.
Moldovan
,
S. I.
,
Braun
,
M. J.
, and
Balasoiu
,
A. M.
,
2013
, “
A Three-Dimensional Parametric Study and Numerical/Experimental Flow Visualization of a Six-Pocket Hydrostatic Journal Bearing
,”
Tribol. Trans.
,
56
(
1
), pp.
1
26
.
8.
Mittwollen
,
N.
,
1990
, “
Betriebsverhalten von Radialgleitlagern bei hohen Umfangsgeschwindigkeiten und hohen thermischen Belastungen – Theoretische Untersuchungen
,” VDI Series 1 No. 187, VDI-Verlag, Düsseldorf, Germany.
9.
Vohr
,
J. H.
,
1986
, “
Discussion on “Mixing Inlet Temperatures in Hydrodynamic Bearings” by Heshmat und Pinkus
,”
ASME J. Tribol.
,
108
(
2
), pp.
244
245
.
10.
Schlichting
,
H.
, and
Gersten
,
E.
,
2006
,
Boundary Layer Theory
, 10th ed.,
Springer-Verlag
,
Berlin
.
11.
Dmochowski
,
W.
,
Brockwell
,
K.
,
DeCamillo
,
S.
, and
Mikula
,
A.
,
1993
, “
A Study of the Thermal Characteristics of the Leading Edge Groove and Conventional Tilting Pad Journal Bearings
,”
ASME J. Tribol.
,
115
(
2
), pp.
219
226
.
12.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
, and
Fillon
,
M.
,
2012
, “
Experimental Comparison of the Performance of a Journal Bearing With a Single and a Twin Axial Groove Configuration
,”
Tribol. Int.
,
54
, pp.
1
8
.
13.
Dadouche
,
A.
,
Fillon
,
M.
, and
Dmochowski
,
W.
,
2006
, “
Performance of a Hydrodynamic Fixed Geometry Thrust Bearing: Comparison Between Experimental Data and Numerical Results
,”
Tribol. Trans.
,
49
(
3
), pp.
419
426
.
14.
Whalen
,
J. K.
, and
Krieser
,
S.
,
1998
, “
Eliminating Oil Leaks by Optimizing Bearing Case Labyrinths
,”
27th Turbomachinery Symposium
, College Station, TX, Sept. 12–15, pp. 93–100.
15.
Dadouche
,
A.
,
Fillon
,
M.
, and
DeCamillo
,
S. M.
,
2013
, “
Hydrodynamic Fixed Geometry Thrust Bearings
,”
Encyclopedia of Tribology
,
Springer
, Boston, MA, pp.
1718
1729
.
16.
Mittwollen
,
N.
,
Rückert
,
A.
,
Schmitz
,
A.
, and
Reinhardt
,
W. D.
,
1991
, “
Verbesserung der Berechnungsgrundlagen für schnelllaufende, hochbelastete Mehrgleitflächen- und Radialkippsegmentlager
,” Report on BMFT-Verbundprojekt 03T0012A, Braunschweig, Germany.
17.
Brockwell
,
K.
,
Dmochowski
,
W.
, and
DeCamillo
,
S.
,
1994
, “
Analysis and Testing of the LEG Tilting Pad Journal Bearing—A New Design for Increasing Load Capacity, Reducing Operating Temperatures and Conserving Energy
,”
23rd Turbomachinery Symposium
, The Turbomachinery Laboratory, Texas A&M University, College Station, TX.
18.
Bang
,
K. B.
,
Kim
,
J. H.
, and
Cho
,
Y. J.
,
2010
, “
Comparison of Power Loss and Pad Temperature for Leading Edge Groove Tilting Pad Journal Bearings and Conventional Tilting Pad Journal Bearings
,”
Tribol. Int.
,
43
(
8
), pp.
1287
1293
.
19.
Harangozo
,
A. V.
,
Stolarski
,
T. A.
, and
Gozdawa
,
R. J.
,
1991
, “
The Effect of Different Lubrication Methods on the Performance of a Tilting-Pad Journal Bearing
,”
Tribol. Trans.
,
34
(
4
), pp.
529
536
.
20.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2018
, “
Theoretical and Experimental Analyses of Directly Lubricated Tilting-Pad Journal Bearings With Leading Edge Groove
,”
ASME J. Eng. Gas Turbines Power
, (accepted manuscript).
21.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
22.
Constantinescu
,
V. N.
,
1975
, “
Special Problems Concerning Lubrication Phenomenas at Large Reynolds Numbers
,”
Second Leeds-Lyon Symposium of Tribology
, Paper V(i), pp.
77
84
.
23.
Falz
,
E.
,
1931
, “
Grundzüge der Schmierungstechnik
,”
Springer
,
Berlin
.
24.
Hagemann
,
T.
,
Kukla
,
S.
, and
Schwarze
,
H.
,
2013
, “
Measurement and Prediction of the Static Operating Conditions of a Large Turbine Tilting-Pad Bearing Under High Circumferential Speeds and Heavy Loads
,”
ASME
Paper No. GT2013-95004.
25.
Hagemann
,
T.
,
2011
, “
Ölzuführungseinfluss bei schnell laufenden und hoch belasteten Radialgleitlagern unter Berücksichtigung des Lagerdeformationsverhaltens
,” Ph.D. thesis, University of Clausthal, Clausthal-Zellerfeld, Germany.
26.
Bou-Said
,
B.
, and
Chaomleffel
,
J. P.
,
1989
, “
Hybrid Journal Bearings: Theoretical and Ex-Perimental Results
,”
ASME J. Tribol.
,
111
(
2
), pp.
265
269
.
27.
Pan
,
C. H. T.
,
1974
, “
Calculation of Pressure, Shear, and Flow in Lubricating Films for High Speed Bearings
,”
ASME J. Lubr. Technol.
,
96
(
1
), pp.
80
94
.
28.
Brauer
,
H.
,
1971
, “
Grundlagen der Einphasen- und Mehrphasenströmung
,” Vol.
2
,
Sauerländer
,
Switzerland
.
29.
Elrod
,
H. G.
, and
Ng
,
C. W.
,
1967
, “
A Theory of Turbulent Fluid Films and Its Applications to Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
346
362
.
30.
Mittwollen
,
N.
, and
Glienicke
,
J.
,
1990
, “
Operating Conditions of Multi-Lobe Journal Bearings Under High Thermal Loads
,”
ASME J. Tribol.
,
112
(
2
), pp.
330
338
.
31.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
32.
Mermertas
,
Ü.
,
Hagemann
,
T.
, and
Brichart
,
C.
,
2018
, “
Optimization of a 900 mm Tilting-Pad Journal Bearing in Large Steam Turbines by Advanced Modeling and Validation
,”
ASME J. Eng. Gas Turbines Power
, (accepted manuscript).
33.
Hopf
,
G.
, and
Schüler
,
D.
,
1989
, “
Investigations on Large Turbine Bearings Working Under Transitional Conditions Between Laminar and Turbulent Flow
,”
ASME J. Tribol.
,
111
(
4
), pp.
628
634
.
34.
Hopf
,
G.
,
1989
, “
Experimentelle Untersuchungen an großen Radialgleitlagern für Turbomaschinen
,” Ph.D. thesis, Ruhr University Bochum, Bochum, Germany.
You do not currently have access to this content.