During ultrasonic vibration honing (UVH), a thin hydrodynamic oil film formed can seriously affect the cavitation effect in the grinding fluid, but the mechanism is still unclear now. Based on the hydrodynamics theory, a revised cavitation bubble model with oil film pressure is developed, and it has been calculated by the four-order Runge–Kutta method. The calculation results show that the oil film pressure under UVH is a positive–negative alternant pulse pressure, and it can induce the secondary expansion of the bubble, leading to double microjets during the process of the bubble collapsing. The effects of ultrasonic amplitude, ultrasonic frequency, oil film height, and reciprocation speed of the honing stone on the bubble dynamics are discussed. With the increase of ultrasonic amplitude, the amplitude of the bubble expansion is increased, and the oscillation interval is extended. As increasing normalized oil film height, the variation of the bubble first expansion is slight, while the amplitude of the bubble secondary expansion is reduced and the oscillation interval is also shortened. The main effect of ultrasonic frequency and reciprocation speed of the honing stone on the bubble dynamics is connected with the secondary bubble expansion. The bubble secondary expansion is decreased with the increasing reciprocation speed of the honing stone, ultrasonic frequency, and oil film height. The results of the simulations are consistent with the surface roughness measurements well, which provides a theoretical prediction method of cavitation bubbles control.

References

1.
Zhu
,
X. J.
, and
Gao
,
Y. X.
,
2007
, “
A New Ultrasonic Vibration Machine for Honing
,”
Int. J. Comput. Appl. Technol.
,
29
(
2–4
), pp.
216
219
.
2.
Zhu
,
X. J.
,
Xu
,
H. J.
,
Wang
,
A. L.
, and
Sheng
,
X. Q.
,
2004
, “
Research on the Cutting Principle of New Non-Conventional Technology-Efficiency Ultrasonic Honing
,”
Key Eng. Mater.
,
259–260
, pp.
640
643
.
3.
Zhao
,
B.
,
Liu
,
C. S.
,
Gao
,
G. F.
, and
Jiao
,
F.
,
2002
, “
Surface Characteristics in the Ultrasonic Ductile Honing of ZrO2 Ceramics Using Coarse Grits
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
54
60
.
4.
Zhu
,
X. S.
,
Xu
,
K. W.
,
Zhao
,
B.
, and
Ma
,
D. Z.
,
2002
, “
Experimental and Theoretical Research on ‘Local Resonance’ in an Ultrasonic Honing System
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
207
211
.
5.
Shao
,
Y. P.
,
Zhu
,
X. J.
,
Wang
,
A. L.
, and
Liu
,
Z.
,
2012
, “
Research on Power Ultrasonic Honing of Sintered Nd-Fe-B
,”
Adv. Mater. Res.
,
472–475
, pp.
962
967
.
6.
Yuan
,
Y.
,
Ma
,
Y.
,
Chen
,
M.
,
Wang
,
D.
, and
Zhao
,
B.
,
2006
, “
Study on the Experiments of the Relationship Between the Geometric Dimensions of Flexural Vibration Disk and Its Vibration Characteristics
,”
J. Achiev. Mater. Manuf. Eng.
,
18
(
1–2
), pp.
255
258
.
7.
Kuai
,
J. C.
,
2013
, “
Multi-Field Coupling Mechanisms of Electrolytic in Process Dressing-Ultrasonic Honing System
,”
Telkomnika
,
11
(
7
), pp.
4104
4110
.
8.
Ichida
,
Y.
,
Sato
,
R.
,
Morimoto
,
Y.
, and
Kobayashi
,
K.
,
2005
, “
Material Removal Mechanisms in Non-Contact Ultrasonic Abrasive Machining
,”
Wear
,
258
(
1–4
), pp.
107
114
.
9.
Yagi
,
K.
, and
Sugimura
,
J.
,
2013
, “
Elastohydrodynamic Simulation of Rayleigh Step Bearings in Thin Film Hydrodynamic Lubrication
,”
Tribol. Int.
,
64
(
3
), pp.
204
214
.
10.
Leighton
,
T. G.
,
1995
, “
Bubble Population Phenomena in Acoustic Cavitation
,”
Ultrason. Sonochem.
,
2
(
2
), pp.
S123
S136
.
11.
Xu
,
W. W.
,
Lai
,
Z. N.
,
Wu
,
D. Z.
, and
Wang
,
L.
,
2013
, “
Acoustic Emission Characteristics of Underwater Gas Jet From a Horizontal Exhaust Nozzle
,”
Appl. Acoust.
,
74
(
6
), pp.
845
849
.
12.
Verhaagen
,
B.
, and
Rivas
,
D. F.
,
2016
, “
Measuring Cavitation and Its Cleaning Effect
,”
Ultrason. Sonochem.
,
29
, pp.
619
628
.
13.
Wijngaarden
,
L. V.
,
2016
, “
Mechanics of Collapsing Cavitation Bubbles
,”
Ultrason. Sonochem.
,
29
, pp.
524
527
.
14.
Nath
,
C.
,
Lim
,
G. C.
, and
Zheng
,
H. Y.
,
2012
, “
Influence of the Material Removal Mechanism on Hole Integrity in Ultrasonic Machining of Structural Ceramics
,”
Ultrasonics
,
52
(
5
), pp.
605
613
.
15.
Zarepour
,
H.
, and
Yeo
,
S. H.
,
2012
, “
Predictive Modeling of Material Removal Modes in Micro Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
62
(
2
), pp.
13
23
.
16.
Tsuboi
,
R.
,
Kakinuma
,
Y.
, and
Aoyama
,
H. S.
,
2012
, “
Ultrasonic Vibration and Cavitation-Aided Micromachining of Hard and Brittle Materials
,”
Procedia CIRP
,
1(1
), pp.
342
346
.
17.
Gole
,
V. L.
,
Naveen
,
K. R.
, and
Gogate
,
P. R.
,
2013
, “
Hydrodynamic Cavitation as an Efficient Approach for Intensification of Synthesis of Methyl Esters From Sustainable Feedstock
,”
Chem. Eng. Process.
,
71
(
71
), pp.
70
76
.
18.
Prosperetti
,
A.
, and
Lezzi
,
A.
,
1986
, “
Bubble Dynamics in a Compressible Liquid I First-Order Theory
,”
J. Fluid Mech.
,
168
(
1
), pp.
457
478
.
19.
Merouani
,
S.
,
Ferkous
,
H.
,
Hamdaoui
,
O.
,
Rezgui
,
Y.
, and
Guemini
,
M.
,
2015
, “
New Interpretation of the Effects of Argon-Saturating Gas Toward Sonochemical Reactions
,”
Ultrason. Sonochem.
,
23
, pp.
37
45
.
20.
Merouani
,
S.
,
Hamdaoui
,
O.
,
Rezgui
,
Y.
, and
Guemini
,
M.
,
2015
, “
Sensitivity of Free Radicals Production in Acoustically Driven Bubble to the Ultrasonic Frequency and Nature of Dissolved Gases
,”
Ultrason. Sonochem.
,
22
, pp.
41
50
.
21.
Zhu
,
X. J.
,
Guo
,
C.
,
Wang
,
J. Q.
, and
Liu
,
G. D.
,
2013
, “
Dynamics Modeling of Cavitation Bubble in the Grinding Area of Power Ultrasonic Honing
,”
Adv. Mater. Res.
,
797
, pp.
108
111
.
22.
Pi
,
J.
, and
Xu
,
X. P.
,
2010
, “
Hydrodynamics Pressure Oil Film Modeling and Experimental Study of Ultrasonic Vibration Cutting
,”
J. Mech. Eng.
,
46
(
7
), pp.
176
180
.
23.
Loukopoulos
,
V. C.
,
Messaris
,
G. T.
, and
Bourantas
,
G. C.
,
2013
, “
Numerical Solution of the Incompressible Navier–Stokes Equations in Primitive Variables and Velocity-Vorticity Formulation
,”
Appl. Math. Comput.
,
222
, pp.
575
588
.
24.
Yasui
,
K.
,
Towata
,
A.
,
Tuziuti
,
T.
,
Kozuka
,
T.
, and
Kato
,
K.
,
2011
, “
Effect of Static Pressure on Acoustic Energy Radiated by Cavitation Bubbles in Viscous Liquids Under Ultrasound
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
3233
3242
.
25.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
, Chap. 1.
26.
Brujan
,
E. A.
, and
Matsumoto
,
Y.
,
2012
, “
Collapse of Micrometer-Sized Cavitation Bubbles Near a Rigid Boundary
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
957
966
.
27.
Brujan
,
E. A.
,
Ikeda
,
T.
,
Yoshinaka
,
A. K.
, and
Matsumoto
,
Y.
,
2011
, “
The Final Stage of the Collapse of a Cloud of Bubbles Close to a Rigid Boundary
,”
Ultrason. Sonochem.
,
18
(
1
), pp.
59
64
.
28.
Chen
,
X. G.
,
Yan
,
J. C.
,
Gao
,
F.
,
Wei
,
J. H.
,
Xu
,
Z. W.
, and
Fan
,
G. H.
,
2013
, “
Interaction Behaviors at the Interface Between Liquid Al-Si and Solid Ti-6Al-4V in Ultrasonic-Assisted Brazing in Air
,”
Ultrason. Sonochem.
,
20
(
1
), pp.
144
154
.
29.
Sojahrood
,
A. J.
,
Soltanpoor
,
W.
, and
Sarkhosh
,
L.
,
2009
, “
Towards Classification of the Bifurcation Structure of a Spherical Cavitation Bubble
,”
Ultrasonics
,
49
(
8
), pp.
605
610
.
30.
Guo
,
C.
,
Zhu
,
X. J.
,
Wang
,
J. Q.
,
Cheng
,
Q.
, and
Liu
,
G. D.
,
2014
, “
Dynamical Behaviors of Double Cavitation Bubbles Under Ultrasonic Honing
,”
Chin. J. Theor. Appl. Mech.
,
46
(
6
), pp.
879
885
.
31.
Tan
,
K. L.
, and
Yeo
,
S. H.
,
2017
, “
Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing
,”
Wear
,
378–379
, pp.
90
95
.
You do not currently have access to this content.