The present study includes the investigation on the frictional dynamics of hard and soft solid interface using low velocity linear tribometer. The effects of gelatin concentration, nanoparticles concentration, normal stress, and sliding velocity on the static and dynamic frictional shear stresses acting on the sliding gel block are studied using response surface methodology (RSM). The shear sliding experiments are conducted in steady sliding regime, well above the critical velocity. L31 orthogonal array consisting of five levels for each factor is selected for the experimentation and second-order quadratic model has been generated for both the responses. The mathematic models are validated with the available trends mentioned in the literature.

References

1.
Baumberger
,
T.
,
Caroli
,
C.
, and
Ronsin
,
O.
,
2002
, “
Self-Healing Slip Pulses along a Gel/Glass Interface
,”
Phys. Rev. Lett.
,
88
(
7
), p.
075509
.
2.
Baumberger
,
T.
,
Caroli
,
C.
, and
Ronsin
,
O.
,
2003
, “
Self-Healing Slip Pulses and the Friction of Gelatin Gels
,”
Eur. Phys. J.
,
11
(
1
), pp.
85
93
.
3.
Gong
,
J.
,
Higa
,
M.
,
Iwasaki
,
Y.
,
Katsuyama
,
Y.
, and
Osada
,
Y.
,
1997
, “
Friction of Gels
,”
J. Phys. Chem. B
,
101
(28), pp.
5487
5489
.
4.
Gong
,
J. P.
,
Iwasaki
,
Y.
, and
Osada
,
Y.
,
2000
, “
Friction of Gels. 5. Negative Load Dependence of Polysaccharide Gels
,”
J. Phys. Chem. B
,
104
(15), pp.
3423
3428
.
5.
Gong
,
J. P.
,
Kurokawa
,
T.
,
Narita
,
T.
,
Kagata
,
G.
,
Osada
,
Y.
,
Nishimura
,
G.
, and
Kinjo
,
M.
,
2001
, “
Synthesis of Hydrogels With Extremely Low Surface Friction
,”
J. Am. Chem. Soc.
,
123
(23), pp.
5582
5583
.
6.
Gong
,
J. P.
,
Kagata
,
G.
,
Iwasaki
,
Y.
, and
Osada
,
Y.
,
2001
, “
Surface Friction of Polymer Gels 1. Effect of Interfacial Interaction
,”
Wear
,
251
(1–12), pp.
1183
1187
.
7.
Gong
,
J.
, and
Osada
,
Y.
,
1998
, “
Gel Friction: A Model Based on Surface Repulsion and Adsorption
,”
J. Chem. Phys.
,
109
(
18
), pp.
8062
8068
.
8.
Kurokawa
,
T.
,
Tominaga
,
T.
,
Katsuyama
,
Y.
,
Kuwabara
,
R.
,
Furukawa
,
H.
,
Osada
,
Y.
, and
Gong
,
J. P.
,
2005
, “
Elastic-Hydrodynamic Transition of Gel Friction
,”
Langmuir
,
21
(19), pp.
8643
8648
.
9.
Kagata
,
G.
,
Gong
,
J. P.
, and
Osada
,
Y.
,
2002
, “
Friction of Gels. 6. Effects of Sliding Velocity and Viscoelastic Responses of the Network
,”
J. Phys. Chem. B
,
106
(18), pp.
4596
4601
.
10.
Kagata
,
G.
,
Gong
,
J. P.
, and
Osada
,
Y.
,
2003
, “
Friction of Gels. 7. Observation of Static Friction Between Like-Charged Gels
,”
J. Phys. Chem., B
,
107
(37), pp.
10221
10225
.
11.
Nayebzadeh
,
K.
,
Chen
,
J.
,
Dickinson
,
E.
, and
Moschakis
,
T.
,
2006
, “
Surface Structure Smoothing Effect of Polysaccharide on a Heat-Set Protein Particle Gel
,”
Langmuir
,
22
(21), pp.
8873
8880
.
12.
Patek
,
S. N.
, and
Baio
,
J. E.
,
2007
, “
The Acoustic Mechanics of Stick–Slip Friction in the California Spiny Lobster (Panulirus Interruptus)
,”
J. Exp. Biol.
,
210
, pp.
3538
3546
.
13.
Biondi
,
M.
,
Borzacchiello
,
A.
,
Mayol
,
L.
, and
Ambrosio
,
L.
,
2015
, “
Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications
,”
Gels
,
1
(2), pp.
162
178
.
14.
Bussea
,
L.
,
Peterb
,
K.
,
Karla
,
C. W.
,
Geislera
,
H.
, and
Kluppela
,
M.
,
2011
, “
Reducing Friction With Al2O3/SiO2-Nanoparticles in NBR
,”
Wear
,
271
(7–8), pp.
1066
1071
.
15.
Pan
,
Y.
, and
Xiong
,
D.
,
2009
, “
Friction Properties of Nano-Hydroxyapatite Reinforced Poly (Vinyl Alcohol) Gel Composites as an Articular Cartilage
,”
Wear
,
266
(7–8), pp.
699
703
.
16.
Thakre
,
A. A.
,
2014
, “
Prediction of Erosion of Polyetherimide and Its Composites Using Response Surface Methodology
,”
ASME J. Tribol.
,
137
(
1
), p.
011603
.
17.
Thakre
,
A. A.
, and
Thakur
,
A.
,
2015
, “
Study of Behavior of Aluminum Oxide Nanoparticles Suspended in SAE20W40 Oil Under Extreme Pressure Lubrication
,”
Ind. Lubr. Tribol.
,
67
(
4
), pp.
328
335
.
You do not currently have access to this content.