This work relates to previous studies concerning the asymptotic behavior of Stokes flow in a narrow gap between two surfaces in relative motion. It is assumed that one of the surfaces is rough, with small roughness wavelength μ, so that the film thickness h becomes rapidly oscillating. Depending on the limit of the ratio h/μ, denoted as λ, three different lubrication regimes exist: Reynolds roughness (λ = 0), Stokes roughness (0 < λ < ∞), and high-frequency roughness (λ = ∞). In each regime, the pressure field is governed by a generalized Reynolds equation, whose coefficients (so-called flow factors) depend on λ. To investigate the accuracy and applicability of the limit regimes, we compute the Stokes flow factors for various roughness patterns by varying the parameter λ. The results show that there are realistic surface textures for which the Reynolds roughness is not accurate and the Stokes roughness must be used instead.

References

1.
Bayada
,
G.
, and
Chambat
,
M.
,
1986
, “
The Transition Between the Stokes Equations and the Reynolds Equation: A Mathematical Proof
,”
Appl. Math. Optim.
,
14
(
1
), pp.
73
93
.
2.
Hamrock
,
B.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
3.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
40
(
242–245
), pp.
191
203
.
4.
Elrod
,
H.
,
1973
, “
Thin-Film Lubrication Theory for Newtonian Fluids With Surfaces Possessing Striated Roughness or Grooving
,”
ASME J. Lubr. Tech.
,
95
(
4
), pp.
484
489
.
5.
Bayada
,
G.
, and
Chambat
,
M.
,
1988
, “
New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
110
(
3
), pp.
402
407
.
6.
Fabricius
,
J.
,
Koroleva
,
Y. O.
,
Tsandzana
,
A.
, and
Wall
,
P.
,
1988
, “
Asymptotic Behaviour of Stokes Flow in a Thin Domain With a Moving Rough Boundary
,”
Proc. R. Soc. London, Ser. A
,
470
(
2167
), p.
20130735
.
7.
Almqvist
,
A.
,
Essel
,
E. K.
,
Persson
,
L. E.
, and
Wall
,
P.
,
2007
, “
Homogenization of the Unstationary Incompressible Reynolds Equation
,”
Tribol. Int.
,
40
(
9
), pp.
1344
1350
.
8.
Cioranescu
,
D.
, and
Donato
,
P.
,
1999
,
An Introduction to Homogenization
,
Oxford University Press
,
New York
.
9.
Persson
,
L.
,
Persson
,
L.
,
Svanstedt
,
N.
, and
Wyller
,
J.
,
1993
,
The Homogenization Method an Introduction
,
Studentlitteratur
,
Lund, Sweden
.
10.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
,
2005
, “
Two-Scale Homogenization of a Hydrodynamic Elrod-Adams Model
,”
Asymptotic Anal.
,
44
(
1
), pp.
75
110
.
11.
Buscaglia
,
G.
,
Ciuperca
,
I.
, and
Jai
,
M.
,
2002
, “
Homogenization of the Transient Reynolds Equation
,”
Asymptotic Anal.
,
32
(
2
), pp.
131
152
.
12.
Jai
,
M.
,
1995
, “
Homogenization and Two-Scale Convergence of the Compressible Reynolds Lubrication Equation Modelling the Flying Characteristics of a Rough Magnetic Head Over a Rough Rigid-Disk Surface
,”
RAIRO-Modél. Math. Anal. Numér.
,
29
(
2
), pp.
199
233
.
13.
Phan-Thien
,
N.
,
1982
, “
Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
383
(
1785
), pp.
439
446
.
14.
Wall
,
P.
,
2007
, “
Homogenization of Reynolds Equation by Two-Scale Convergence
,”
Chin. Ann. Math., Ser. B
,
28
(
3
), pp.
363
374
.
15.
Bayada
,
G.
, and
Chambat
,
M.
,
1989
, “
Homogenization of the Stokes System in a Thin Film Flow With Rapidly Varying Thickness
,”
RAIRO Model. Math. Anal. Numer.
,
23
(
2
), pp.
205
234
.
16.
Benhaboucha
,
N.
,
Chambat
,
M.
, and
Ciuperca
,
I.
,
2005
, “
Homogenization of the Stokes System in a Thin Film Flow With Rapidly Varying Thickness
,”
Q. Appl. Math.
,
63
(
2
), pp.
369
400
.
17.
0.01w?
Schwendeman
,
D. W.
,
Please
,
C. P.
,
Tilley
,
B. S.
, and
Hendriks
,
F.
,
2013
, “
A Homogenization Analysis of the Compressible Flow Between a Slider and a Moving Patterned Rough Surface
,”
IMA J. Appl. Math.
,
80
(
1
), pp.
177
211
.
18.
Almqvist
,
A.
,
Fabricius
,
J.
,
Spencer
,
A.
, and
Wall
,
P.
,
2011
, “
Similarities and Differences Between the Flow Factor Method by Patir and Cheng and Homogenization
,”
ASME J. Tribol.
,
133
(
3
), p.
031702
.
19.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Tech.
,
100
(
1
), pp.
12
17
.
20.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Tech.
,
101
(
2
), pp.
220
229
.
You do not currently have access to this content.