Machine hammer peening (MHP) is an incremental surface finishing process. It enables both surface smoothing and texturing. Compared to well-established surface texturing processes, MHP has the advantage of simultaneous induction of strain hardening and compressive residual stresses. Both texturing and surface layer modification are very beneficial in case of mixed-boundary lubrication. MHP has been only recently developed. Therefore, the influence of surface textures manufactured by MHP on tribological interactions is unknown and lacks fundamental investigations. In this work, hydrodynamics of MHP textures is investigated by means of a three-dimensional (3D) computational fluid dynamics (CFD) analysis. The analyzed MHP textures have already been experimentally used to reduce friction in strip drawing tests. Using CFD analysis, an optimal arrangement of multiple elliptically shaped surface structures for maximizing the fluid pressure and the load-bearing capacity is determined. Furthermore, a correlation between the determined process parameters and the lubrication properties is presented. Because of significantly high hydrostatic pressures, cavitation is neglected in this work. Additionally, the effect of structure pileups is neglected in this study. Within the range of parameters investigated, it was found that an arrangement of surface textures by MHP should be transversally overlapping and clearly separated longitudinally. High structure depths, lubricant viscosities, and sliding velocities further improve the load-bearing capacity as well as small fluid-film thicknesses.

References

1.
Steitz
,
M.
,
Scheil
,
J.
,
Müller
,
C.
, and
Groche
,
P.
,
2013
, “
Effect of Process Parameters on Surface Roughness in Hammer Peening and Deep Rolling
,”
Key Eng. Mater.
,
554–557
, pp.
1887
1901
.
2.
Bleicher
,
F.
,
Lechner
,
C.
,
Habersohn
,
C.
,
Kozeschnik
,
E.
,
Adjassoho
,
B.
, and
Kaminiski
,
H.
,
2012
, “
Mechanism of Surface Modification Using Machine Hammer Peening Technology
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
375
378
.
3.
Wied
,
J.
,
2011
, “
Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
4.
Lienert
,
F.
,
Hoffmeister
,
J.
, and
Schulze
,
V.
,
2013
, “
Residual Stress Depth Distribution after Piezo Peening of Quenched and Tempered AISI 4140
,”
ICSR 9
,
Materials Science Forum
, pp.
768
769
.
5.
Trauth
,
D.
,
Klocke
,
F.
,
Schongen
,
F.
, and
Shirobokov
,
A.
,
2013
, “
Analyse und Modellierung der Schlagkraft beim elektro-dynamischen Festklopfen zur kraftbasierten Prozessauslegung
,” UTFScience III/2013, http://www.umformtechnik.net
6.
Klocke
,
F.
,
Trauth
,
D.
,
Schongen
,
F.
, and
Shirobokov
,
A.
,
2014
, “
Analysis of Friction Between Stainless Steel Sheets and Machine Hammer Peened Structured Tool Surfaces: Experimental and Numerical Investigation of the Lubricated Interaction Gap
,”
Prod. Eng.
,
8
(
3
), pp.
263
272
.
7.
Klocke
,
F.
,
Trauth
,
D.
,
Schongen
,
F.
, and
Terhorst
,
M.
,
2013
, “
Time-Efficient Process Design of Machine Hammer Peening—Prediction of the Surface Layer State Using Similitude Theory
,”
Werkstatttechnik Wt Online
,
10
, pp.
758
763
.
8.
Klocke
,
F.
,
Trauth
,
D.
,
Terhorst
,
M.
, and
Mattfeld
,
P.
,
2014
, “
Wear Analysis of Tool Surfaces Structured by Machine Hammer Peening for Foil-Free Forming of Stainless Steel
,”
Adv. Mater. Res.
,
1018
, pp.
317
324
.
9.
Trauth
,
D.
,
Klocke
,
F.
,
Terhorst
,
M.
, and
Mattfeld
,
P.
,
2015
, “
Physicochemical Analysis of Machine Hammer Peened Surface Structures for Deep Drawing: Determination of the Work of Adhesion and Spreading Pressure Between Lubricant and Surface Structure
,”
ASME J. Tribol.
,
137
(
2
), pp.
022301
.
10.
Ramesh
,
A.
,
Akram
,
W.
,
Mishra
,
S. P.
,
Cannon
,
A. H.
,
Polycarpou
,
A. A.
, and
King
,
W. P.
,
2013
, “
Friction Characteristics of Microtextured Surfaces Under Mixed and Hydrodynamic Lubrication
,”
Tribol. Int.
,
57
(
1
), pp.
170
176
.
11.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
8
), pp.
737
750
.
12.
Brizmer
,
V.
,
Kligermann
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
,
46
(
3
), pp.
397
403
.
13.
Brizmer
,
V.
, and
Kligermann
,
Y.
,
2012
, “
A Laser Surface Textured Journal Bearing
,”
ASME J. Tribol.
,
134
(
3
), p.
031702
.
14.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication
,”
Phil. Trans. R. Soc. London
,
177
(
0
), pp.
157
237
.
15.
Jacobs
,
G.
, and
Plogmann
,
M.
,
2013
,
Tribology
,
Druck & Verlagshaus Mainz
, Aachen, Germany.
16.
Popov
,
L.
,
2009
,
Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation
,
Springer
, Berlin.
17.
Young
,
R. F.
,
1999
,
Cavitation
,
Imperial College Press
, London.
18.
Hartinger
,
M.
,
2007
, “
CFD Modelling of Elastohydrodynamic Lubrication
,” Ph.D. thesis, Imperial College London, London.
19.
Dowson
,
D.
,
1975
,
Leeds-Lyon Symposium on Tribology: Cavitation and Related Phenomena in Lubrication, 1st: Proceedings
,
Institution of Mechanical Engineers
.
20.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
21.
Brown
,
S. R.
, and
Hamilton
,
G. M.
,
1978
, “
Negative Pressures Under a Lubricated Piston Ring
,”
J. Mech. Eng. Sci.
,
20
(
1
), pp.
49
57
.
22.
Kaneko
,
S.
,
Yuji
,
H.
, and
Hiroki
,
I.
,
1996
, “
Analysis of Oil-Film Pressure Distribution in Porous Journal Bearing Under Hydrodynamic Lubrication Conditions Using an Improved Boundary Condition
,”
1996 ASME/STLE Joint Tribology Conference
, pp.
1
8
.
23.
Wissussek
,
D.
,
1978
, “
Das hydrodynamische Druckprofil im Radialgleitlager und sein Einfluss auf die Tragfaehigkeit bei Variation des Umgebungsdruckes
,” Fortschritt-Berichte der VDI-Zeitschriften, Reihe 4: Bauingenieurwesen, Report No. 54.
24.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
,
Wiley
, Weinheim, Germany.
25.
Dobrica
,
M.
, and
Fillon
,
M.
,
2009
, “
About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
1
), pp.
69
78
.
26.
Costa
,
H. L.
, and
Hutchings
,
I. M.
,
2007
, “
Hydrodynamic Lubrication of Textured Steel Surfaces Under Reciprocating Sliding Conditions
,”
Tribol. Int.
,
40
(
8
), pp.
1227
1238
.
27.
Krupka
,
I.
, and
Hartl
,
M.
,
2007
, “
The Effect of Surface Texturing on Thin EHD Lubrication Films
,”
Tribol. Int.
,
40
(
7
), pp.
1100
1110
.
28.
Brewe
,
D. E.
,
2001
, “
Slider Bearings
,”
Modern Tribology Handbook
, CRC Press, New York.
29.
Han
,
J.
,
Fang
,
L.
,
Sun
,
J.
, and
Ge
,
S.
,
2010
, “
Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD
,”
Tribol. Trans.
,
53
(
6
), pp.
860
870
.
30.
Klocke
,
F.
,
Trauth
,
D.
,
Terhorst
,
M.
, and
Mattfeld
,
P.
,
2014
, “
Friction Analysis of Alternative Tribosystems for a Foil Free Forming of Stainless Steel Using Strip Drawing Test: Analysis of Physicochemical Interactions Between Coatings and Lubricants
,”
Prod. Eng.
,
8
(
5
), pp.
593
602
.
You do not currently have access to this content.