The influence of the spherical joint with clearance caused by wear on the dynamics performance of spatial multibody system is predicted based on the Archard's wear model and equations of motion of multibody systems. First, the function of contact deformation and load acting on the spherical joint with clearance is derived based on the improved Winkler elastic foundation model and Hertz quadratic pressure distribution assumption. On this basis, considering the influence of clearance size and wear state on the contact stiffness between spherical joint elements, an improved contact force model is proposed by Lankarani–Nikravesh contact force model and improved stiffness coefficient that is the slope of the function of contact deformation and load. Second, due to the complexity for that wear impacts on the surface topography of contact bodies, an approximate calculation method of contact area with respect to the clearance spherical joint is provided for simplifying the computational process of contact pressure in the Archard's wear model. Subsequently, the contact pressure between contact bodies is calculated by the improved contact force model and approximate contact area (ICFM–ACA), which is verified via finite element method (FEM). Moreover, the dynamics model of spatial four bar mechanism considering spherical joint with clearance caused by wear is formulated using equations of motion of multibody systems. Finally, the wear depth of spherical joint with clearance is predicted via two different kinds of contact pressure based on the Archard's wear model (one is from the ICFM–ACA and the other is from FEM), respectively. The numerical simulation results show that the improved contact force model and proposed approximate contact area are correctness and validity for predicting wear in the spherical joint with clearance. Simultaneously, the effect of the spherical joint with clearance caused by wear on the dynamics performance of spatial four bar mechanism is analyzed.

References

1.
Brauer
,
J.
, and
Andersson
,
S.
,
2003
, “
Simulation of Wear in Gears With Flank Interference—A Mixed FE and Analytical Approach
,”
Wear
,
254
(
11
), pp.
1216
1232
.10.1016/S0043-1648(03)00338-7
2.
Hardwick
,
C.
,
Lewis
,
R.
, and
Eadie
,
D. T.
,
2014
, “
Wheel and Rail Wear—Understanding the Effects of Water and Grease
,”
Wear
,
314
(
1–2
), pp.
198
204
.10.1016/j.wear.2013.11.020
3.
Jourdan
,
F.
, and
Samida
,
A.
,
2009
, “
An Implicit Numerical Method for Wear Modeling Applied to a Hip Joint Prosthesis Problem
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
27
), pp.
2209
2217
.10.1016/j.cma.2009.02.017
4.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Analysis of Planar Multibody Systems With Revolute Joint Wear
,”
Wear
,
268
(
5
), pp.
643
652
.10.1016/j.wear.2009.10.014
5.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Comparison Between Elastic Foundation and Contact Force Models in Wear Analysis of Planar Multibody System
,”
ASME J. Tribol.
,
132
(
3
), pp.
1
11
.10.1115/1.4001786
6.
Mukras
,
S.
,
Mauntler
,
N. A.
,
Kim
,
N. H.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2009
, “
Modeling a Slider-Crank Mechanism With Joint Wear
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
2
(
1
), pp.
600
612
.10.4271/2009-01-0403
7.
Bai
,
Z. F.
,
Zhao
,
Y.
, and
Chen
,
J.
,
2013
, “
Dynamics Analysis of Planar Mechanical System Considering Revolute Clearance Joint Wear
,”
Tribol. Int.
,
64
, pp.
85
95
.10.1016/j.triboint.2013.03.007
8.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.10.1016/j.mechmachtheory.2008.08.003
9.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2012
, “
Numerical Study of Parametric Effects on the Dynamic Response of Planar Multi-Body Systems With Differently Located Frictionless Revolute Clearance Joints
,”
Mech. Mach. Theory
,
53
, pp.
30
49
.10.1016/j.mechmachtheory.2012.02.007
10.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2006
, “
A Study on Dynamics of Mechanical Systems Including Joints With Clearance and Lubrication
,”
Mech. Mach. Theory
,
41
(
3
), pp.
247
261
.10.1016/j.mechmachtheory.2005.10.002
11.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.10.1023/B:MUBO.0000042901.74498.3a
12.
Mukras
,
S.
,
Kim
,
N. H.
,
Sawyer
,
W. G.
,
Jackson
,
D. B.
, and
Bergquist
,
L. W.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
(
7–8
), pp.
822
831
.10.1016/j.wear.2008.12.016
13.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.10.1115/1.2198877
14.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.10.1007/s11071-009-9583-z
15.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13
), pp.
913
929
.10.1016/j.compstruc.2009.03.006
16.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
L.
,
2006
, “
Normal Force-Displacement Relationship of Spherical Joints With Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
160
168
.10.1115/1.2162872
17.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
18.
Ambrósio
,
J. A.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
,
Springer
,
Dordrecht, The Netherlands
, pp.
57
81
.
19.
Dorini
,
F. A.
, and
Sampaio
,
R.
,
2012
, “
Some Results on the Random Wear Coefficient of the Archard Model
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051008
.10.1115/1.4006453
20.
Gummer
,
A.
, and
Sauer
,
B.
,
2012
, “
Influence of Contact Geometry on Local Friction Energy and Stiffness of Revolute Joints
,”
ASME J. Tribol.
,
134
(
2
), p.
021402
.10.1115/1.4006248
21.
Brutti
,
C.
,
Coglitore
,
G.
, and
Valentini
,
P. P.
,
2011
, “
Modeling 3D Revolute Joint With Clearance and Contact Stiffness
,”
Nonlinear Dyn.
,
66
(
4
), pp.
531
548
.10.1007/s11071-010-9931-z
22.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
23.
Lopes
,
D. S.
,
Silva
,
M. T.
,
Ambrósio
,
J. A.
, and
Flores
,
P.
,
2010
, “
A Mathematical Framework for Contact Detection Between Quadric and Superquadric Surfaces
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
255
280
.10.1007/s11044-010-9220-0
24.
Flores
,
P.
, and
Ambrósio
,
J. A.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.10.1007/s11044-010-9209-8
25.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.10.1007/s11071-013-0787-x
26.
Gummer
,
A.
, and
Sauer
,
B.
,
2014
, “
Modeling Planar Slider-Crank Mechanisms With Clearance Joints in RecurDyn
,”
Multibody Syst. Dyn.
,
31
(
2
), pp.
127
145
.10.1007/s11044-012-9339-2
27.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
R.
,
2007
, “
The FEM Analysis and Approximate Model for Cylindrical Joints With Clearances
,”
Mech. Mach. Theory
,
42
(
2
), pp.
183
197
.10.1016/j.mechmachtheory.2006.02.006
28.
Flores
,
P.
,
Ambrósio
,
J. A.
, and
Claro
,
J. C. P.
,
2006
, “
Influence of the Contact—Impact Force Model on the Dynamic Response of Multibody Systems
,”
Proc. Inst. Mech. Eng., Part K
,
220
(
1
), pp.
21
34
.10.1243/146441906X77722
29.
Sawyer
,
W. G.
,
2001
, “
Wear Predictions for a Simple-Cam Including the Coupled Evolution of Wear and Load
,”
Lubr. Eng.
,
57
(
9
), pp.
31
36
.
30.
Flores
,
P.
, and
Ambrósio
,
J. A.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17
), pp.
1359
1369
.10.1016/j.compstruc.2004.03.031
31.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2012
, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints
,”
Mech. Mach. Theory
,
52
, pp.
106
129
.10.1016/j.mechmachtheory.2012.01.016
32.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2012
, “
Dynamic Behaviour Analysis of Planar Mechanical Systems With Clearance in Revolute Joints Using a New Hybrid Contact Force Model
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
190
205
.10.1016/j.ijmecsci.2011.10.009
33.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2012
, “
Dynamic Analysis of Planar Multi-Body Systems With LuGre Friction at Differently Located Revolute Clearance Joints
,”
Multibody Syst. Dyn.
,
28
(
4
), pp.
369
393
.10.1007/s11044-012-9309-8
34.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.10.1063/1.1721448
35.
Yang
,
L. J.
,
2005
, “
A Test Methodology for Determination of Wear Coefficient
,”
Wear
,
259
(
7
), pp.
1453
1461
.10.1016/j.wear.2005.01.026
36.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2006
, “
Wear Simulation Using an Incremental Sliding Boundary Element Method
,”
Wear
,
260
(
9
), pp.
1119
1128
.10.1016/j.wear.2005.07.020
37.
Páczelt
,
I.
,
Kucharski
,
S.
, and
Mróz
,
Z.
,
2012
, “
The Experimental and Numerical Analysis of Quasi-Steady Wear Processes for a Sliding Spherical Indenter
,”
Wear
,
274
, pp.
127
148
.10.1016/j.wear.2011.08.026
38.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
(
1–2
), pp.
79
85
.10.1016/S0043-1648(96)07468-6
39.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction: Physical Principles and Applications
,
Springer
,
Berlin, Heidelberg, Germany
.
40.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
41.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
da Silva
,
M. T.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), pp.
1
10
.10.1115/1.4002338
You do not currently have access to this content.