The objective of the present paper is to study analytically the influence of wear on the performance of a capillary-compensated, four-pocket, hybrid journal bearing system operating in a turbulent regime by considering various geometric shapes of recess. The present study deals with bearings having four different geometric shapes of recess, i.e., square, circular, elliptical, and triangular recessed bearings. The wear on the bearing surface is modeled using Dufrane’s abrasive wear model. The Reynolds equation based on Constantinescu’s turbulent lubrication theory has been solved using finite element method along with a restrictor flow equation as a constraint together with appropriate boundary conditions. The numerically simulated results have been presented for a wide range of nondimensional external loads, wear depth parameters, and Reynolds numbers. The numerically simulated results suggest that the combined influence of wear, turbulence, and geometric shape of recess significantly affects the bearing performance. It has been observed that a triangular recessed bearing provides a greater value of minimum fluid film thickness when operating in a turbulent regime. It is also noticed that direct fluid film stiffness coefficients get reduced significantly when bearings operate in a turbulent regime compared with a laminar regime. Further, it is observed that from the viewpoint of fluid film stiffness, a square recessed bearing is found to be most suitable when operating in a turbulent regime.

1.
Franchek
,
N. M.
, and
Childs
,
D. W.
, 1994, “
Experimental Test Results for Four High Speed High Pressure, Orifice Compensated Hybrid Bearing
,”
ASME J. Tribol.
0742-4787,
116
(
1
), pp.
147
153
.
2.
Sharma
,
S. C.
,
Sinhasan
,
R.
,
Jain
,
S. C.
,
Singh
,
N.
, and
Singh
,
S. K.
, 1998, “
Performance of Hydrostatic/Hybrid Journal Bearings With Unconventional Recess Geometries
,”
STLE Tribol. Trans.
1040-2004,
41
(
3
), pp.
375
381
.
3.
Singh
,
N.
,
Sharma
,
S. C.
,
Jain
,
S. C.
, and
Reddy
,
S. S.
, 2004, “
Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes
,”
Tribol. Int.
0301-679X,
37
, pp.
11
24
.
4.
Taylor
,
G. I.
, 1923, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinder
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
223
, pp.
289
343
.
5.
Wilcock
,
D. F.
, 1950, “
Turbulence in High Speed Journal Bearings
,”
Trans. ASME
0097-6822,
76
, pp.
825
833
.
6.
Smith
,
M. I.
, and
Fuller
,
D. D.
, 1956, “
Journal Bearing Operation at Super Laminar Speeds
,”
Trans. ASME
0097-6822,
73
, pp.
469
474
.
7.
Constantinescu
,
V. N.
, 1968, “
Lubrication in Turbulent Regime
,” U.S. Atomic Energy Commission/Division of Technical Information, National Bureau of Standards, U.S. Department of Commerce, Report No. AEC-tr-6959, p.
22151
.
8.
Ng
,
C. W.
, and
Pan
,
C. H. T.
, 1965, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
0021-9223,
87
(
4
), pp.
675
688
.
9.
Hirs
,
G. G.
, 1970, “
Fundamentals of a Bulk Flow Theory for Turbulent Lubricant Films
,” Ph.D. thesis, Delft University, The Netherlands.
10.
Taylor
,
C. M.
, and
Dowson
,
D.
, 1974, “
Turbulent Lubrication Theory—Application to Design
,”
Trans. ASME
0097-6822,
96
, pp.
36
47
.
11.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
, 1974, “
On the Possibilities of Improving the Accuracy of the Evaluation of Inertia Forces in Laminar and Turbulent Films
,”
ASME J. Lubr. Technol.
0022-2305,
96
, pp.
69
79
.
12.
Safar
,
Z. S.
, and
Shawki
,
G. S. A.
, 1978, “
Do Convective Inertia Forces Affect Turbulent Bearing Characteristics?
,”
Tribol. Int.
0301-679X,
11
(
4
), pp.
248
249
.
13.
Elrod
,
H. G.
, and
Ng
,
C. W.
, 1967, “
A Theory for Turbulent Fluid Films and Its Application to Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
89
, pp.
346
362
.
14.
Bouard
,
L.
,
Fillon
,
M.
, and
Frêne
,
J.
, 1996, “
Comparison Between Three Turbulent Models—Application to Thermohydrodynamic Performance of Titling-Pad Journal Bearing
,”
Tribol. Int.
0301-679X,
29
, pp.
11
18
.
15.
Anjani
,
K.
, and
Rao
,
N. S.
, 1995, “
Steady State Analysis of Plain Cylindrical Journal Bearings in Turbulent Regime
,”
Indian J. Eng. Mater. Sci.
0971-4588,
2
, pp.
163
166
.
16.
Safar
,
Z. S.
, 1979, “
Inertia and Thermal Effects in Turbulent Flow Journal Bearing
,”
Wear
0043-1648,
53
, pp.
325
335
.
17.
San Andrés
,
L.
, 1990, “
Turbulent Hybrid Bearings With Fluid Inertia Effects
,”
ASME J. Tribol.
0742-4787,
112
, pp.
699
707
.
18.
Franchek
,
N. M.
,
Childs
,
D. W.
, and
San Andres
,
L.
, 1995, “
Theoretical and Experimental Comparisons for Rotordynamic Coefficients of Highspeed, High-Pressure, Orifice-Compensated Hybrid Bearing
,”
ASME J. Tribol.
0742-4787,
117
(
2
), pp.
285
290
.
19.
Helene
,
M.
,
Arghir
,
M.
, and
Frene
,
J.
, 2003, “
Numerical Three-Dimensional Pressure Patterns in a Recess of a Turbulent and Compressible Hybrid Journal Bearing
,”
ASME J. Tribol.
0742-4787,
125
(
2
), pp.
301
308
.
20.
Frêne
,
J.
,
Arghir
,
M.
, and
Constantinescu
,
V. N.
, 2006, “
Combined Thin-Film and Navier–Stokes Analysis in High Reynolds Number Lubrication
,”
Tribol. Int.
0301-679X,
39
, pp.
734
747
.
21.
Arghir
,
M.
,
Roucou
,
N.
,
Helene
,
M.
, and
Frene
,
J.
, 2003, “
Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell
,”
ASME J. Tribol.
0742-4787,
125
, pp.
309
318
.
22.
Dobrica
,
B. D.
, and
Fillon
,
M.
, 2009, “
About the Validity of Reynolds Number and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
, pp.
69
78
.
23.
Reddecliff
,
J. M.
, and
Vohr
,
J. H.
, 1969, “
Hydrostatic Bearings for Cryogenic Rocket Engine Turbopumps
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
557
575
.
24.
Scharrer
,
J. K.
,
Hecht
,
R. F.
, and
Hibbs
,
R. I.
, Jr.
, 1991, “
The Effects of Wear on the Rotordynamic Coefficients of Hydrostatic Journal Bearing
,”
ASME J. Tribol.
0742-4787,
113
, pp.
210
213
.
25.
Soulas
,
T.
, and
San Andrés
,
L.
, 2003, “
Performance of Damaged Hydrostatic Bearings: Predictions Versus Experiments
,”
ASME J. Tribol.
0742-4787,
125
, pp.
451
456
.
26.
Laurant
,
F.
, and
Childs
,
D. W.
, 2002, “
Measurements of Rotordynamic Coefficients of Hybrid Bearings With (a) a Plugged Orifice, and (b) a Worn Land Surface
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
363
368
.
27.
Tokar
,
I.
, and
Alexandrov
,
S.
, 1989, “
Solution of a Hydrostatic Problem in Turbulent Motion of Lubricant With Allowance for Shaft Deformation and Bearing Wear
,”
Trenie Iznos
0202-4977,
10
(
2
), pp.
219
224
.
28.
Awasthi
,
R. K.
,
Sharma
,
S. C.
, and
Jain
,
S. C.
, 2007, “
Performance of Worn Non-Recessed Hole-Entry Hybrid Journal Bearings
,”
Tribol. Int.
0301-679X,
40
, pp.
717
734
.
29.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
McCloskey
,
T. H.
, 1983, “
Wear of Steam Turbine Journal Bearings at Low Operating Speeds
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
313
317
.
30.
Vaidyanathan
,
K.
, and
Keith
,
T. G.
, Jr.
, 1991, “
Performance Characteristics of Cavitated Noncircular Journal Bearings in the Turbulent Flow Regime
,”
STLE Tribol. Trans.
1040-2004,
34
(
1
), pp.
35
44
.
31.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
, 1986, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes. Part I: Steady-State Characteristics
,”
STLE Tribol. Trans.
1040-2004,
29
(
4
), pp.
565
571
.
32.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
, 1986, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes. Part II: Dynamic Characteristics
,”
STLE Tribol. Trans.
1040-2004,
29
(
4
), pp.
572
577
.
33.
Kumar
,
A.
, and
Mishra
,
S. S.
, 1996, “
Stability of Rigid Rotor in Turbulent Hydrodynamic Worn Journal Bearings
,”
Wear
0043-1648,
193
, pp.
25
30
.
You do not currently have access to this content.