Sliding electrical contacts are found in many electromechanical devices, such as relays, switches, and resistance spot welding. Temperature rise due to sliding friction and electrical current may be the major source of sliding electrical contact deterioration. This paper reports the development of a three-dimensional thermo-elasto-plastic contact model of counterformal bodies, which takes into account transient heat flux, temperature-dependent strain hardening behavior, and a realistic heat partition between surfaces. Transient contact simulations induce a significant increase in computational burden. The discrete convolution and fast Fourier transform and the conjugate gradient method are utilized to improve the computation efficiency. The present model is used to study the case of a half-space sliding over a stationary sphere, and both are made of 7075 aluminum alloy; the contact resistance is considered mainly due to the surface oxide film. The simulation results indicate that the transient contact model is able to capture the history of plastic deformation accumulation and the material melting inception.

1.
Holm
,
R.
, 1967,
Electric Contacts: Theory and Application
,
Springer-Verlag
,
New York
.
2.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
London
.
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
4.
Gao
,
J.
,
Lee
,
S. C.
,
Ai
,
X.
, and
Nixon
,
H.
, 2000, “
An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
519
523
.
5.
Lin
,
J. F.
,
Chung
,
J. C.
,
Chen
,
J. W.
, and
Liu
,
T. C.
, 2005, “
Thermal Analysis of the Transient Temperatures Arising at the Contact Spots of Two Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
694
704
.
6.
Zhai
,
X. J.
, and
Chang
,
L.
, 2000, “
A Transient Thermal Model for Mixed-Film Contacts
,”
Tribol. Trans.
1040-2004,
43
(
3
), pp.
427
434
.
7.
Green
,
I.
, 2002, “
A Transient Dynamic Analysis of Mechanical Seals Including Asperity Contact and Face Deformation
,”
Tribol. Trans.
1040-2004,
45
(
3
), pp.
284
293
.
8.
Kulkarni
,
S. M.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
, 1991, “
Elasto-Plastic Coupled Temperature-Displacement Finite Element Analysis of Two-Dimensional Rolling-Sliding Contact With a Translating Heat Source
,”
ASME J. Tribol.
0742-4787,
113
, pp.
93
101
.
9.
Gupta
,
V.
,
Bastias
,
P.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1993, “
Elasto-Plastic Finite-Element Analysis of 2-D Rolling-Plus-Sliding Contact With Temperature-Dependent Bearing Steel Material Properties
,”
Wear
0043-1648,
169
, pp.
251
256
.
10.
Ye
,
N.
, and
Komvopoulos
,
K.
, 2003, “
Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading
,”
ASME J. Tribol.
0742-4787,
125
, pp.
52
59
.
11.
Wang
,
Q.
, and
Liu
,
G.
, 1999, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
Tribol. Trans.
1040-2004,
42
(
4
), pp.
763
770
.
12.
Liu
,
G.
,
Wang
,
Q.
, and
Liu
,
S. B.
, 2001, “
A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,”
ASME J. Tribol.
0742-4787,
123
, pp.
595
602
.
13.
Simmons
,
J. G.
, 1963, “
Generalized Formula for the Electrical Tunnel Effect Between Similar Electrodes Separated by a Thin Insulating Film
,”
J. Appl. Phys.
0021-8979,
34
(
6
), pp.
1793
1803
.
14.
Dietrich
,
I.
, 1952, “
Messung des Widerstandes dünner isolierender Schichten zwischen Goldkontakten im Bereich des Tunneleffektes
,”
Z. Phys.
0044-3328,
132
, pp.
231
238
.
15.
Ruschau
,
G. R.
,
Yoshikawa
,
S.
, and
Newnham
,
R. E.
, 1992, “
Resistivities of Conductive Composites
,”
J. Appl. Phys.
0021-8979,
72
(
3
), pp.
953
959
.
16.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2004, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces Separated by a Thin Insulating Film
,”
J. Appl. Phys.
0021-8979,
95
(
2
), pp.
576
585
.
17.
Kim
,
B. -K.
,
Hsieh
,
K. -T.
, and
Bostick
,
F. X.
, 1999, “
A Three Dimensional Finite Element Model for Thermal Effect of Imperfect Electric Contacts
,”
IEEE Trans. Magn.
,
35
(
1
), pp.
170
174
. 0018-9464
18.
Kim
,
W.
,
Wang
,
Q.
,
Liu
,
S.
, and
Asta
,
M.
, 2006, “
Simulation of Steady and Unsteady State Surface Temperature Under Sliding Imperfect Electrical Contact Between Rough Surfaces
,”
Proceeding of the 23rd International Conference on Electrical Contacts
, pp.
226
231
.
19.
Kim
,
W.
, 2006, “
Sliding Imperfect Electrical Contact of Engineering Surfaces
,” Ph.D. thesis, Northwestern University, Evanston, IL.
20.
Liu
,
S. B.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
21.
Liu
,
S. B.
,
Wang
,
Q.
, and
Harris
,
S. J.
, 2003, “
Surface Normal Thermoelastic Displacement in Moving Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
125
, pp.
862
868
.
22.
Liu
,
S. B.
, and
Wang
,
Q.
, 2003, “
Transient Thermoelastic Stress Fields in a Half-Space
,”
ASME J. Tribol.
0742-4787,
125
, pp.
33
43
.
23.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
24.
Boucly
,
V.
,
Nelias
,
D.
,
Liu
,
S. B.
,
Wang
,
Q.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
25.
Chen
,
W. W.
, and
Wang
,
Q.
, 2008, “
Thermomechanical Analysis of Elasto-Plastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
0742-4787,
130
, p.
041402
.
26.
Nelias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
ASME J. Tribol.
0742-4787,
128
, pp.
236
244
.
27.
Boucly
,
V.
,
Nelias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of the Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
0742-4787,
129
, pp.
235
245
.
28.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
129
, pp.
761
771
.
29.
Chen
,
W. W.
,
Wang
,
Q.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
, 2008, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling and Sliding
,”
ASME J. Appl. Mech.
0021-8936,
75
, pp.
021021
.
30.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
0742-4787,
118
, pp.
320
328
.
31.
Liu
,
S. B.
,
Hua
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q.
, 2007, “
Tribological Modeling: Application of Fast Fourier Transform
,”
Tribol. Int.
0301-679X,
40
, pp.
1284
1293
.
32.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
33.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
34.
Greenwood
,
J. A.
, 1966, “
Constriction Resistance and the Real Area of Contact
,”
Br. J. Appl. Phys.
0508-3443,
17
, pp.
1621
1632
.
35.
Liu
,
S. B.
,
Peyronnel
,
A.
,
Wang
,
Q.
, and
Keer
,
L. M.
, 2005, “
An Extension of the Hertz Theory for Three-Dimensional Coated Bodies
,”
Tribol. Lett.
1023-8883,
18
(
3
), pp.
303
314
.
36.
Seo
,
K.
, and
Mura
,
T.
, 1979, “
The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains
,”
ASME J. Appl. Mech.
,
46
, pp.
568
572
. 0021-8936
37.
Liu
,
S. B.
, and
Wang
,
Q.
, 2002, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
38.
Love
,
A. E. H.
, 1929, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
228
, pp.
377
420
.
39.
Chiu
,
Y. P.
, 1978, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains Are Uniform
,”
ASME J. Appl. Mech.
,
45
, pp.
302
306
. 0021-8936
40.
Lee
,
W. -S.
,
Sue
,
W. -C.
,
Lin
,
C. -F.
, and
Wu
,
C. -J.
, 2000, “
The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
100
, pp.
116
122
. 0924-0136
41.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
.
42.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
499
506
.
43.
Kim
,
B. -K.
, 1997, “
Phenomenological Modeling of Imperfect Electric Contact Using a Three Dimensional Finite Element Model
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
You do not currently have access to this content.