The paper presents a numerical analysis of the rolling contact between an elastic ellipsoid and an elastic-plastic flat. Numerical simulations have been performed with the help of a contact solver called Plast-Kid®, with an algorithm based on an integral formulation or semi-analytical method. The application of both the conjugate gradient method and the discrete convolution and fast Fourier transform technique allows keeping the computing time reasonable when performing transient 3D simulations while solving the contact problem and calculating the subsurface stress and strain states. The effects of the ellipticity ratio k—ranging from 1 to 16—and of the normal load—from 4.2 GPa to 8 GPa—are investigated. The reference simulation corresponds to the rolling of a ceramic ball on a steel plate made of an AISI 52100 bearing steel under a load of 5.7 GPa. The results that are presented are, first, the permanent deformation of the surface and, second, the contact pressure distribution, the von Mises stress field, the hydrostatic pressure, and the equivalent plastic strain state within the elastic-plastic body. A comparison with an experimental surface deformation profile is also given to validate the theoretical background and the numerical procedure.

1.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
, 4th ed.,
Wiley Intersciences
,
New York
.
2.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
3.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
4.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
5.
Boucly
,
V.
,
Nélias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
6.
Nélias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A 3D Semi-Analytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
129
, pp.
761
771
.
7.
Boucly
,
V.
,
Nélias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of the Rolling and Sliding Contact Between Two Asperities. Part I: Numerical Methodology
,”
ASME J. Tribol.
0742-4787,
129
, pp.
235
245
.
8.
Jacq
,
C.
,
Lormand
,
G.
,
Nélias
,
D.
,
Girodin
,
D.
, and
Vincent
,
A.
, 2003, “
On the Influence of Residual Stresses in Determining the Micro-Yield Stress Profile in a Nitrided Steel by Nano-Indentation
,”
Mater. Sci. Eng., A
0921-5093,
342
, pp.
311
319
.
9.
Antaluca
,
E.
,
Nélias
,
D.
, and
Cretu
,
S.
, 2004, “
A Three-Dimensional Model for Elastic-Plastic Contact With Tangential Loading: Application to a Dented Surface
,”
Proceedings of the 2004 STLE/ASME Tribology Conference
,
Long Beach, CA
, Oct. 24–27, Paper No. TRIB2004-64331.
10.
Sainsot
,
P.
,
Jacq
,
C.
, and
Nélias
,
D.
, 2002, “
A Numerical Model for Elastoplastic Rough Contact
,”
Comput. Model. Eng. Sci.
1526-1492,
3
(
4
), pp.
497
506
.
11.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
, 2006, “
A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
ASME J. Tribol.
0742-4787,
128
, pp.
476
485
.
12.
Gallego
,
L.
, and
Nélias
,
D.
, 2007, “
Modeling of Fretting Wear Under Partial Slip Regime
,”
ASME J. Tribol.
0742-4787,
129
, pp.
528
535
.
13.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
ASME J. Tribol.
0742-4787,
128
, pp.
236
244
.
14.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
494
502
.
15.
Popescu
,
G.
,
Morales-Espejel
,
G. E.
,
Wemekamp
,
B.
, and
Gabelli
,
A.
, 2006, “
An Engineering Model for Three-Dimensional Elastic-Plastic Rolling Contact Analyses
,”
Tribol. Trans.
1040-2004,
49
, pp.
387
399
.
16.
Popescu
,
G.
,
Gabelli
,
A.
,
Morales-Espejel
,
G. E.
, and
Wemekamp
,
B.
, 2006, “
Micro-Plastic Material Model and Residual Fields in Rolling Contact
,”
J. ASTM Int.
1546-962X,
3
, pp.
1
12
.
17.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
, 1996, “
A Universal Integration Algorithm for Rate-Dependant Elastoplasticity
,”
Comput. Struct.
0045-7949,
59
, pp.
1173
1184
.
You do not currently have access to this content.