This study is focused on characterization of microstructural changes linked to deformation and crack formation mechanisms in duplex Ti-6Al-4V specimens used in displacement controlled fretting-only experiments. In particular, the effect of slip displacement amplitude and number of fretting cycles on the evolution of grain morphology, grain orientation, misorientation distribution, composition, and microhardness is investigated using electron backscatter diffraction (EBSD), energy dispersive X-ray analysis (EDX), and nanoindentation. A strong basal microtexture and significant oxygen diffusion were observed in the Ti-6Al-4V specimen that exhibited the most significant cracking. A critical slip amplitude threshold may exist for which a combination of mechanisms, such as plastic deformation, grain reorientation, and oxygen diffusion, occur during fretting that make conditions ideal for crack formation. The results provide insights for development and validation of computational crystal plasticity models with application to fretting and sliding contact problems. New fretting damage-assessment measures have also been identified and have application for components that suffer from fretting wear and/or fatigue related failures.

1.
Wallace
,
J. M.
, and
Neu
,
R. W.
,
2003
, “
Fretting Fatigue Crack Nucleation in Ti-6Al-4V
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
, pp.
199
214
.
2.
Glaeser
,
W. A.
, and
Lawless
,
B. H.
,
2001
, “
Behavior of Alloy Ti-6Al-4V Under Pre-Fretting and Subsequent Fatigue Conditions
,”
Wear
,
250
, pp.
621
630
.
3.
Sauger
,
E.
,
Fouvry
,
S.
,
Ponsonnet
,
L.
,
Kapsa
,
Ph.
,
Martin
,
J. M.
, and
Vincent
,
L.
,
2000
, “
Tribologically Transformed Structure in Fretting
,”
Wear
,
245
, pp.
39
52
.
4.
Fayeulle
,
S.
,
Blanchard
,
P.
, and
Vincent
,
L.
,
1993
, “
Fretting Behavior of Titanium Alloys
,”
Tribol. Trans.
,
36
(
2
), pp.
267
275
.
5.
Rigney
,
D. A.
,
2000
, “
Transfer, Mixing and Associated Chemical and Mechanical Processes During the Sliding of Ductile Materials
,”
Wear
,
245
, pp.
1
9
.
6.
Goh
,
C. H.
,
Wallace
,
J. M.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
,
2001
, “
Polycrystal Plasticity Simulations of Fretting Fatigue
,”
Int. J. Fatigue
,
23
, pp.
423
435
.
7.
Heilmann
,
P.
,
Clark
,
W. A. T.
, and
Rigney
,
D. A.
,
1983
, “
Orientation Determination of Subsurface Cells Generated by Sliding
,”
Acta Metall.
,
31
(
8
), pp.
1293
1305
.
8.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
,
1992
, “
Evolution of F.C.C. Deformation Structures in Polyslip
,”
Acta Metall. Mater.
,
40
(
2
), pp.
205
219
.
9.
Beaudoin
,
A. J.
,
Acharya
,
A.
,
Chen
,
S. R.
,
Korzekwa
,
D. A.
, and
Stout
,
M. G.
,
2000
, “
Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals
,”
Acta Mater.
,
48
, pp.
3409
3423
.
10.
Bhattacharyya
,
A.
,
El-Danaf
,
E.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
,
2001
, “
Evolution of Grain-Scale Microstructure During Large Strain Simple Compression of Polycrystalline Aluminum With Quasi-Columnar Grains: OIM Measurements and Numerical Simulations
,”
Int. J. Plast.
,
17
, pp.
861
883
.
11.
Hansen
,
N.
,
Huang
,
X.
, and
Hughes
,
D. A.
,
2001
, “
Microstructural Evolution and Hardening Parameters
,”
Mater. Sci. Eng., A
,
317
, pp.
3
11
.
12.
Hughes
,
D. A.
,
Liu
,
Q.
,
Chrazan
,
D. C.
, and
Hansen
,
N.
,
1996
, “
Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries
,”
Acta Mater.
,
45
(
1
), pp.
105
112
.
13.
Butler
,
G. C.
, and
McDowell
,
D. L.
,
1998
, “
Polycrystal Constraint and Grain Subdivision
,”
Int. J. Plast.
,
14
(
8
), pp.
703
717
.
14.
Guvenilir
,
A.
,
Butler
,
G. C.
,
Haase
,
J. D.
,
McDowell
,
D. L.
, and
Stock
,
S. R.
,
1998
, “
X-ray Microbeam Quantification of Grain Subdivision Accompanying Large Deformations of Copper
,”
Acta Mater.
,
46
(
18
), pp.
6599
6604
.
15.
Barton
,
N. R.
, and
Dawson
,
P. R.
,
2001
, “
A Methodology for Determining Average Lattice Orientation and its Application to the Characterization of Grain Substructure
,”
Metall. Mater. Trans. A
,
32A
, pp.
1967
1975
.
16.
Angeliu, T. M., Andresen, P. L., Hall, E., Sutliff, J. A., and Sitzman, S., “Strain and Microstructure Characterization of Austenitic Stainless Steel Weld HAZs,” Proc. Corrosion 2000, Houston, TX, Paper No. 00186, pp. 1–9.
17.
Bache
,
M. R.
, and
Evans
,
W. J.
,
2001
, “
Impact of Texture on Mechanical Properties in an Advanced Titanium Alloy
,”
Mater. Sci. Eng., A
,
319–321
, pp.
409
414
.
18.
Salem
,
A. A.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
,
2003
, “
Strain Hardening of Titanium: Role of Deformation Twinning
,”
Acta Mater.
,
51
, pp.
4225
4237
.
19.
Fundenberger
,
J. J.
,
Philippe
,
M. J.
,
Wagner
,
F.
, and
Esling
,
C.
,
1997
, “
Modelling and Prediction of Mechanical Properties for Materials With Hexagonal Symmetry (Zinc, Titanium, and Zirconium Alloys)
,”
Acta Mater.
,
45
(
10
), pp.
4041
4055
.
20.
Wilson
,
R. J.
,
Randle
,
V.
, and
Evans
,
W. J.
,
1997
, “
The Influence of the Burgers Relation on Crack Propagation in a Near α-titanium Alloy
,”
Philos. Mag. A
,
76
, pp.
471
480
.
21.
Eylon, D., 1998, “Summary of the Available Information on the Processing of the Ti-6Al-4V HCF/LCF Program Plates,” University of Dayton, Dayton, Ohio.
22.
Kurath, P., 1999, “Final Report: Biaxial Fatigue of Ti-6-4 at 20°C,” UIUC #1-5-521170, AF Dayton RSC980007.
23.
Feaugas
,
X.
,
Pilvin
,
P. H.
, and
Clavel
,
M.
,
1997
, “
Cyclic Deformation Behaviour of an α/β Titanium Alloy-II. Internal Stresses and Micromechanic Modelling
,”
Acta Mater.
,
45
(
7
), pp.
2703
2714
.
24.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
25.
Swalla, D. R., 2003, “Microstructural Characterization of Titanium Alloys With Fretting Damage,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
26.
Inca Version 4, Oxford Instruments, Oxon, England.
27.
Channel 5, 2003, HKL Technology, Hobro, Denmark.
28.
Randle, V., and Engler, O., 2000, Texture Analysis: Macrotexture, Microtexture & Orientation Mapping, Gordon and Breach, New York.
29.
Li
,
X.
, and
Bhushan
,
B.
,
2002
, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications
,”
Mater. Charact.
,
48
, pp.
11
36
.
30.
Rainforth
,
W. M.
,
2000
, “
Microstructural Evolution at the Worn Surface: A Comparison of Metals and Ceramics
,”
Wear
,
245
, pp.
162
177
.
31.
Tucker
,
A. T.
,
Wilkinson
,
A. J.
,
Henderson
,
M. B.
,
Ubhi
,
H. S.
, and
Martin
,
J. W.
,
2000
, “
Measurement of Fatigue Crack Plastic Zones in Fine Grained Materials Using Electron Backscattered Diffraction
,”
Mater. Sci. Technol.
,
16
, pp.
427
430
.
32.
Grimmer, H., 1979, “The Distribution of Disorientation Angles if all Relative Orientations of Neighboring Grains are Equally Probable,” Scripta Metallurgica, 13, pp. 161–164.
33.
Mackenzie
,
J. K.
,
1964
, “
The Distribution of Rotation Axes in a Random Aggregate of Cubic Crystals
,”
Acta Metall.
,
12
, pp.
223
225
.
34.
Scott
,
V. D.
, and
Wilman
,
H.
,
1958
, “
Surface Re-Orientation Caused on Metals by Abrasion-its Nature, Origin, and Relation to Friction and Wear
,”
Proc. R. Soc. London, Ser. A
,
247
(
1250
), pp.
353
368
.
35.
Farhat
,
Z. N.
,
2001
, “
Contribution of Crystallographic Texturing to the Sliding Friction Behavior of fcc and hcp Metals
,”
Wear
,
250
, pp.
401
408
.
36.
Mayeur, J., and McDowell, D. L., 2003, Personal communication.
37.
Vingsbo
,
O.
, and
Soderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
, pp.
131
147
.
You do not currently have access to this content.