The nanomechanical and nanotribological properties of 10-nm-thick amorphous carbon (a-C) films and 100-nm-thick polycrystalline chromium (Cr) and titanium carbide (TiC) films were investigated using a surface force microscope (SFM). The films were deposited on Si(100) substrates by radio frequency (RF) sputtering and pulsed laser deposition (PLD) techniques. The experiments were performed with diamond tips of nominal radius of curvature equal to 20 nm, 100 nm, and 20 μm, and contact forces in the range of 3–400 μN. Nanoindentation experiments performed with the 20-nm-radius pyramidal diamond tip revealed that, for a 20 μN maximum contact force, the deformation of the a-C films was purely elastic, whereas that of the Cr film and Si(100) substrate was predominantly plastic. Although the RF sputtered a-C films and the PLD films of TiC exhibited similar nanohardness (∼40 GPa), the a-C films showed a superior nanowear resistance. Despite the identical hardness-to-elastic modulus ratio values of the RF sputtered polycrystalline Cr films and the single-crystal Si(100) substrate, the Cr films demonstrated a greater nanowear resistance. The wear behavior of the films is interpreted in terms of the relative specific energy dissipated during the nanowear process. Results from nanowear tests show that, in addition to the nanohardness and hardness-to-elastic modulus ratio, the microstructure, type of atomic bonding, and deposition process affecting the composition and residual stress in the films influence the nanowear resistance of the films.

1.
Moody, N. R., Gerberich, W. W., Burnham, N., and Baker, S. P., 1998, Fundamentals of Nanoindentation and Nanotribology, Mater. Res. Soc. Symp. Proc., 522, Materials Research Society, Warrendale, PA.
2.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, pp.
1564
1583
.
3.
Page
,
T. F.
,
Riester
,
L.
, and
Hainsworth
,
S. V.
,
1998
, “
The Plasticity Response of 6H-SiC and Related Isostructural Materials to Nanoindentation: Slip vs. Densification
,”
Mater. Res. Soc. Symp. Proc.
,
522
, pp.
113
118
.
4.
Corcoran
,
S. G.
,
Colton
,
R. J.
,
Lilleodden
,
E. T.
, and
Gerberich
,
W. W.
,
1997
, “
Anomalous Plastic Deformation at Surfaces: Nanoindentation of Gold Single Crystals
,”
Phys. Rev. B
,
55
, pp.
R16057–R16060
R16057–R16060
.
5.
Asif
,
S. A. S.
, and
Pethica
,
J. B.
,
1997
, “
Nanoindentation Creep of Single-Crystal Tungsten and Gallium Arsenide
,”
Philos. Mag. A
,
76
, pp.
1105
1118
.
6.
Page
,
T. F.
,
Oliver
,
W. C.
, and
McHargue
,
C. J.
,
1992
, “
The Deformation Behavior of Ceramic Crystals Subjected to Very Low Load (Nano)indentations
,”
J. Mater. Res.
,
7
, pp.
450
473
.
7.
Wei
,
B.
, and
Komvopoulos
,
K.
,
1996
, “
Nanoscale Indentation Hardness and Wear Characterization of Hydrogenated Carbon Thin Films
,”
ASME J. Tribol.
,
118
, pp.
431
438
.
8.
Wei
,
B.
, and
Komvopoulos
,
K.
,
1997
, “
Friction and Wear Micromechanisms of Amorphous Carbon Thin Films
,”
ASME J. Tribol.
,
119
, pp.
823
829
.
9.
Schwarz
,
U. D.
,
Zwo¨rner
,
O.
,
Ko¨ster
,
P.
, and
Wiesendanger
,
R.
,
1997
, “
Quantitative Analysis of the Frictional Properties of Solid Materials at Low Loads. I. Carbon Compounds
,”
Phys. Rev. B
,
56
, pp.
6987
6996
.
10.
Mosch
,
S.
,
Grau
,
P.
, and
Berg
,
G.
,
1998
, “
Nanotribological Measurements of Sol-Gel Derived Silica Films
,”
Mater. Res. Soc. Symp. Proc.
,
522
, pp.
415
420
.
11.
Yokohata
,
T.
,
Kato
,
K.
,
Miyamoto
,
T.
, and
Kaneko
,
R.
,
1998
, “
Load-Dependency of Friction Coefficient Between Silicon-Oxides and Diamond Under Ultra-Low Contact Load
,”
ASME J. Tribol.
,
120
, pp.
503
509
.
12.
Lu
,
W.
, and
Komvopoulos
,
K.
,
1999
, “
Microstructure and Nanomechanical Properties of Nitrogenated Amorphous Carbon Thin Films Synthesized by Reactive Radio Frequency Sputtering
,”
J. Appl. Phys.
,
85
, pp.
2642
2651
.
13.
Schiffmann
,
K.
,
1988
, “
Microwear Experiments on Metal-Containing Amorphous Hydrocarbon Hard Coatings by AFM: Wear Mechanisms and Models for the Load and Time Dependence
,”
Wear
,
216
, pp.
27
34
.
14.
Jiang
,
Z.
,
Lu
,
C.-J.
,
Bogy
,
D. B.
, and
Miyamoto
,
T.
,
1995
, “
An Investigation of the Experimental Conditions and Characteristics of a Nano-Wear Test
,”
Wear
,
181–183
, pp.
777
783
.
15.
Schmid
,
S. R.
,
Hector
,
L. G.
,
Elings
,
J.
,
Hampel
,
H.
, and
Piehler
,
H.
,
1998
, “
Single Asperity Plowing of Metallic and Polymeric Surfaces in an Atomic Force Microscope: An Overview of Recent Developments
,”
Mater. Res. Soc. Symp. Proc.
,
522
, pp.
391
397
.
16.
Day
,
R. D.
,
Dickerson
,
R. M.
, and
Russell
,
P. E.
,
1998
, “
Stain Hardening of FCC Metal Surfaces Induced by Microploughing
,”
Mater. Res. Soc. Symp. Proc.
,
522
, pp.
421
426
.
17.
Kato
,
K.
,
1990
, “
Tribology of Ceramics
,”
Wear
,
136
, pp.
117
133
.
18.
Enachescu
,
M.
,
van den Oetelaar
,
R. J. A.
,
Carpick
,
R. W.
,
Ogletree
,
D. F.
,
Flipse
,
C. F. J.
, and
Salmeron
,
M.
,
1998
, “
Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond (111)/Tungsten Carbide Interface
,”
Phys. Rev. Lett.
,
81
, pp.
1877
1880
.
19.
Jiang
,
Z.
,
Lu
,
C.-J.
,
Bogy
,
D. B.
, and
Miyamoto
,
T.
,
1995
, “
Dependence of Nano-Friction and Nano-Wear on Loading Force for Sharp Diamond Tips Sliding on Si, Mn-Zn Ferrite, and Au
,”
ASME J. Tribol.
,
117
, pp.
328
333
.
20.
Khurshudov
,
A.
, and
Kato
,
K.
,
1997
, “
Wear Mechanisms in Reciprocal Scratching of Polycarbonate, Studied by Atomic Force Microscopy
,”
Wear
,
205
, pp.
1
10
.
21.
Lu
,
W.
, and
Komvopoulos
,
K.
,
2001
, “
Nanotribological and Nanomechanical Properties of Ultrathin Amorphous Carbon Films Synthesized by Radio Frequency Sputtering
,”
ASME J. Tribol.
,
123
, pp.
641
650
.
22.
Lu
,
W.
, and
Komvopoulos
,
K.
,
1999
, “
Dependence of Growth and Nanomechanical Properties of Ultrathin Amorphous Carbon Films on Radio Frequency Sputtering Conditions
,”
J. Appl. Phys.
,
86
, pp.
2268
2277
.
23.
Lu, W., and Komvopoulos, K., 2001, “X-ray Photoelectron Spectroscopy and X-Ray Auger Electron Spectroscopy Analysis of Ultrathin Amorphous Carbon Films Deposited on Si(100) by Radio Frequency Sputtering, J. Appl. Phys. (submitted).
24.
Zergioti
,
I.
,
Fotakis
,
C.
, and
Haidemenopoulos
,
G. N.
,
1997
, “
Growth of TiB2 and TiC Coatings Using Pulsed Laser Deposition
,”
Thin Solid Films
,
303
, pp.
39
46
.
25.
Zergioti
,
I.
, and
Haidemenopoulos
,
G. N.
,
1997
, “
On the Nanocrystalline Structure of TiC and TiB2 Produced by Laser Ablation
,”
Nanostruct. Mater.
,
8
, pp.
55
59
.
26.
Bailey, A. E., Gillham, E. J., Herington, E. F. G., and Rose, B., 1986, Tables of Physical and Chemical Constants, Longman, New York, NY.
27.
Martin-Gil
,
J.
,
Martin-Gil
,
F. J.
,
Sarikaya
,
M.
,
Qian
,
M.
,
Jose-Yacaman
,
M.
, and
Rubio
,
A.
,
1997
, “
Evidence of a Low Compressibility Carbon Nitride With Defect-Zincblende Structure
,”
J. Appl. Phys.
,
81
, pp.
2555
2559
.
28.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
, pp.
614
616
.
29.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
30.
Meinhard
,
H.
,
Grau
,
P.
,
Berg
,
G.
, and
Mosch
,
S.
,
1997
, “
Hardness and Flow Behaviour of Glass in the Nanometre Range—An Interpretation of the Load Dependence of the Hardness
,”
Glass Sci. Technol.
,
70
, pp.
333
339
.
31.
Lu
,
W.
, and
Komvopoulos
,
K.
,
2000
, “
Implanted Argon Atoms as Sensing Probes of Residual Stress in Ultrathin Films
,”
Appl. Phys. Lett.
,
76
, pp.
3206
3208
.
32.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1985
, “
The Mechanism of Friction in Boundary Lubrication
,”
ASME J. Tribol.
,
107
, pp.
452
462
.
33.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1986
, “
Plowing Friction in Dry and Lubricated Metal Sliding
,”
ASME J. Tribol.
,
108
, pp.
301
313
.
You do not currently have access to this content.