A simple analytical approach using conditions of conservation of the mass is proposed for the 1-D “negative squeeze” lubrication problem in order to calculate the cavitation boundary position during oscillatory motion of two plates. The same geometrical case is analyzed using Bonneau’s finite element code. Good agreements between analytical and numerical results support validation of Bonneau’s algorithm. As an example of application of this algorithm to squeeze motion case, the EHD lubrication of an elastic connecting-rod small end bearing is analyzed. Influences of the shaft elasticity and lubricant piezoviscosity are presented. [S0742-4787(00)02101-9]
Issue Section:
Technical Papers
1.
Hays, D. F., and Feiten, J. B., 1964, “Cavities Between Moving Parallel Plates,” Cavitation in Real Liquids, R. Davies, ed., Elsevier Publishing Company, New York, N.Y., pp. 122–137.
2.
Rodrigues, A. N., 1970, “An Analysis of Cavitation in a Circular Squeeze Film and Correlation with Experimental Results,” Ph.D. thesis, Cornell University, Ithaca, NY.
3.
Parkins
, D. W.
, and Stanley
, W. T.
, 1982
, “Characteristics of an Oil Squeeze Film
,” ASME J. Tribol.
, 104
, pp. 497
–503
.4.
Parkins
, D. W.
, and May-Miller
, R.
, 1984
, “Cavitation in an Oscillatory Oil Squeeze Film
,” ASME J. Tribol.
, 106
, pp. 360
–367
.5.
Parkins
, D. W.
, and Woollam
, J. H.
, 1986
, “Behavior of an Oscillating Oil Squeeze Film
,” ASME J. Tribol.
, 108
, pp. 639
–644
.6.
Fantino
, B.
, Fre^ne
, J.
, and Duparquet
, J.
, 1979
, “Elastic Connecting-Rod Bearing with Piezoviscous Lubricant: Analysis of the Steady State Characteristics
,” ASME J. Lubr. Technol.
, 101
, No. 2
, pp. 190
–200
.7.
Fantino, B., 1981, “Influence des de´fauts de forme et des de´formations e´lastiques des surfaces en lubrification hydrodynamique sous charge statiques et dynamiques,” The`se No. 1-DE-8122, INSA de Lyon, France.
8.
Fantino
, B.
, and Fre^ne
, J.
, 1985
, “Comparison of Dynamic Behavior of Elastic Connecting-rod Bearing in Both Petrol and Diesel Engines
,” ASME J. Tribol.
, 107
, pp. 87
–91
.9.
Oh
, K. P.
, and Goenka
, P. K.
, 1985
, “The Elastohydrodynamic Solution of Journal Bearings under Dynamic Loading
,” ASME J. Tribol.
, 107
, pp. 389
–395
.10.
Murty, K. G., 1974, “Note on a Bard-type Scheme for Solving the Complementarity Problems,” Opsearch, Vol. 11, pp. 123–130.
11.
Kumar
, A.
, and Booker
, J. F.
, 1991
, “A Finite Element Cavitation Algorithm
,” ASME J. Tribol.
, 113
, pp. 276
–286
.12.
Kumar
, A.
, and Booker
, J. F.
, 1991
, “A Finite Element Cavitation Algorithm: Application/Validation
,” ASME J. Tribol.
, 113
, pp. 255
–261
.13.
Boedo
, S.
, and Booker
, J. F.
, 1995
, “Cavitation in Normal Separation of Square and Circular Plates
,” ASME J. Tribol.
, 117
, pp. 403
–410
.14.
Jacobson, B., and Floberg, L., 1957, “The Finite Journal Bearing Considering Vaporisation,” Chalmers Tekniska Hoegskolas Hnndlingar, Vol. 190, pp. 1–116.
15.
Olsson, K., 1974, “On Hydrodynamic Lubrication with Special Reference to Nonstationary Cavitation,” Chalmers University of Technology, Goteborg.
16.
Bonneau
, D.
, Guines
, D.
, Fre^ne
, J.
, and Toplosky
, J.
, 1995
, “EHD Analysis, Including Structural Inertia Effects and Mass-Conserving Cavitation Model
,” ASME J. Tribol.
, 117
, pp. 540
–547
.17.
Tanneau, G., Fre^ne, J., and Berthe, D., 1985, “Theoretical Approach to Roughness Effects in the Small-End Bearing of a Connecting-Rod,” Proceedings of the 11th Leeds-Lyon Symposium on Tribology, Butterworths, pp. 64–69.
18.
Zeidan
, Y. F.
, and Vance
, J. M.
, 1989
, “Cavitation Leading to a Two Phase Fluid in a Squeeze Film Dapmer
,” Tribol. Trans.
, 32
, 1, pp. 100
–104
.19.
Pinkus, O., and Sternlich, B., 1961, Theory of Hydrodynamic Lubrication, McGraw-Hill.
20.
Prat
, P.
, Vergne
, Ph.
, and Sicre
, J.
, 1994
, “New Results in High Pressure and Low Temperature Rheology of Liquid Lubricant for Space Application
,” ASME J. Tribol.
, 116
, pp. 629
–634
. Copyright © 2000
by ASME
You do not currently have access to this content.