This paper describes a theoretical and experimental investigation into the nonlinear characteristics of the eight coefficients which specify the lateral flexibility of a hydrodynamic journal bearing. Coefficient calculations allowed viscosity to vary with temperature, and pressure, and examined a range of positive and negative displacements and velocities. Experimental techniques have been developed in which coefficients were deduced from specially chosen, imposed vibration orbits arising from two mutually perpendicular external oscillating forces of variable relative magnitude and phase. Journal centre displacement and velocity were measured using high speed data logging equipment. Coefficients are defined in terms of a “zero” value and linear gradient. Using realistic criteria, measured coefficient non-linearity was found to be significant at eccentricity ratios greater than 0.78. Theory adequately predicted some “zero” values but not gradients. An improvement in the coefficient prediction may depend on the inclusion of some previous history dependent factors.

This content is only available via PDF.
You do not currently have access to this content.