In the present paper a mathematical model for a mini-channel heat exchanger is proposed. Multiobjective optimization using genetic algorithm is performed in the next step in order to obtain a set of geometrical design parameters, leading to minimum pressure drops and maximum overall heat transfer coefficient. Multiobjective optimization procedure provides a set of optimal solutions, called Pareto front, each of which is a trade-off between the objective functions and can be freely selected by the user according to the specifications of the project. A sensitivity analysis is also carried out to study the effects of different geometrical parameters on the considered functions. The whole system has been modeled based on advanced experimental correlations in matlab environment using a modular approach.

References

1.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
(
7
), pp.
661
667
.10.1016/S0360-5442(96)00165-X
2.
Zhang
,
H.
,
Li
,
J.
, and
Li
H.
,
2010
,“
Numerical Simulations of a Micro-Channel Wall-Tube Condenser for Domestic Refrigerators
,”
Tsinghua Sci. Technol.
,
15
(
4
), pp.
426
433
.10.1016/S1007-0214(10)70083-3
3.
Wang
,
H.
, and
Peterson
R. B.
,
2010
, “
Performance Enhancement of a Thermally Activated Cooling System Using Microchannel Heat Exchangers
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2951
2962
.10.1016/j.applthermaleng.2011.05.026
4.
Lia
,
Q.
,
Flamant
,
G.
,
Yuana
,
X.
,
Neveub
,
P.
, and
Luod
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications For a New Generation of High Temperature Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.10.1016/j.rser.2011.07.066
5.
Park
,
C. Y.
, and
Hrnjak
,
P.
,
2008
, “
Experimental and Numerical Study on Microchannel and Round-Tube Condensers in a R410A Residential Air-Conditioning System
,”
Refrigeration
,
31
(
5
), pp.
822
831
.10.1016/j.ijrefrig.2007.10.007
6.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Micro-Channels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
7.
Lee
,
P.
, and
Garimella
,
S. V.
,
2006
,
“Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
8.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Asendrych
D.
,
2005
, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2943
2954
.10.1016/j.ijheatmasstransfer.2004.10.006
9.
Park
,
H. S.
, and
Punch
,
J.
,
2008
,“
Friction Factor and Heat Transfer in Multiple Microchannels With Uniform Flow Distribution
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4535
4543
.10.1016/j.ijheatmasstransfer.2008.02.009
10.
Lee
,
P.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
11.
Rosa
,
P.
,
Karayiannis
,
T.
, and
Collins
M.
,
2009
, “
Single-Phase Heat Transfer in Micro-Channels: the Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
.10.1016/j.applthermaleng.2009.05.015
12.
Morini
,
G.
,
2006
, “
Scaling Effects for Liquid Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
64
73
.10.1080/01457630500523865
13.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.10.1080/10893950152646759
14.
Tayal
,
M. C.
,
Fu
,
Y.
, and
Diwekar
,
U. M.
,
1999
, “
Optimal Design of Heat Exchangers: A Genetic Algorithm Framework
,”
Ind. Eng. Chem. Res.
,
38
(
2
), pp.
456
467
.10.1021/ie980308n
15.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q. W.
,
2008
, “
Optimization of Compact Heat Exchangers by a Genetic Algorithm
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
895
906
.10.1016/j.applthermaleng.2007.07.008
16.
Najafi
,
H.
, and
Najafi
,
B.
,
2010
, “
Multi-Objective Optimization of a Plate and Frame Heat Exchanger via Genetic Algorithm
,”
Heat Mass Transfer
,
46
(
6
), pp.
639
647
.10.1007/s00231-010-0612-8
17.
Tchanche
,
B.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl.Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.10.1016/j.applthermaleng.2008.12.025
18.
Delgado-Torres
,
A. M.
, and
García-Rodríguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2846
2856
.10.1016/j.enconman.2010.06.022
19.
Bou Lawz Ksayer
,
E.
,
2011
, “
Design of an ORC System Operating With Solar Heat and Producing Sanitary Hot Water
,”
Energy Procedia
,
6
, pp.
389
395
.10.1016/j.egypro.2011.05.045
20.
Guo
,
T.
,
Wang
,
H. X.
, and
Zhang
,
S. J.
,
2011
, “
Selection of Working Fluids for a Novel Low-Temperature Geothermally-Powered ORC Based Cogeneration System
,”
Energy Convers. Manage.
,
52
(
6
), pp.
2384
2391
.10.1016/j.enconman.2010.12.038
21.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Elec. Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
22.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
23.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.10.1002/er.1720
24.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
D.
,
2004
, “
Mini- and Micro- Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
25.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic
,
New York
, pp.
477
478
, Chap. XIV.
26.
Lienhard
IV,
J. H.
,
2008
,
A Heat Transfer Textbook
,
Phlogiston
,
Cambridge, MA
, Chap. 7.
27.
Incropera
,
F.
, and
Dewitt
D.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
, Chap. 8–10–11.
28.
Citrini
,
D.
, and
Noseda
G.
,
1979
,
Idraulica
,
CEA
,
Milano
, Chap. 7.
29.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2011
, “
Boiling Heat Transfer and Flow Regimes in Microchannels – A Comprehensive Understanding
,”
ASME J. Electron. Packag
,
133
, pp.
1
10
.10.1115/1.4002721
30.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Mini-Channels and Micro-Channels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
86
93
.10.1080/01457630490280425
31.
Kandlikar
,
S. G.
,
Garimella
,
S. D.
Li
,
Colin
,
S.
, and
King
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
New York
, Chap. 5.
32.
Chisholm
,
D.
,
1983
,
Two-Phase Flow in Pipelines and Heat Exchangers
,
Godwin
,
New York
.
33.
English
,
N. J.
, and
Kandlikar
,
S. G.
,
2005
, “
An Experimental Investigation Into the Effect of Surfactants on Air-Water Two-Phase Flow in Minichannels
,”
Proceedings of the Third International Conference on Microchannels and Minichannels
, ASME Paper No. ICMM2005-75110.
34.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
35.
Mishima
,
K.
, and
Hibiki
,
T.
,
1996
, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
703
712
.10.1016/0301-9322(96)00010-9
36.
Najafi
,
H.
,
Najafi
,
B.
, and
Hoseinpoori
,
P.
,
2011
, “
Energy and Cost Optimization of a Plate and Fin Heat Exchanger Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1839
1847
.10.1016/j.applthermaleng.2011.02.031
37.
Sanaye
,
S.
, and
Shirazi
,
A.
,
2012
, “
Four E Analysis and Multi-Objective Optimization of an Ice Thermal Energy Storage for Air-Conditioning Applications
,”
Int. J. Refrigeration
,
36
(3)
, pp.
828
841
.10.1016/j.ijrefrig.2012.10.014
38.
Shirazi
,
A.
,
Aminyavari
,
M.
,
Najafi
,
B.
,
Rinaldi
,
F.
, and
Razaghi
M.
,
2012
, “
Thermal–Economic–Environmental Analysis and Multi-Objective Optimization of an Internal-Reforming Solid Oxide Fuel Cell–Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19111
19124
.10.1016/j.ijhydene.2012.09.143
39.
Najafi
,
B.
,
Najafi
,
H.
, and
Idalik
,
M. D.
,
2011
, “
Computational Fluid Dynamics Investigation and Multi-Objective Optimization of an Engine Air-Cooling System Using a Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
225
(
6
), pp.
1389
1398
.10.1177/0954406210395877
40.
Holland
,
J.
,
1975
,
Adaptation in Natural and Artificial System
,
University of Michigan Press
,
Ann Arbor, MI
.
41.
Goldberg
,
D. E.
,
2000
,
Genetic Algorithms in Search and Machine Learning
,
Addison-Wesley Longman
,
Reading, MA
.
42.
Konak
,
A.
,
Coit
,
D.
, and
Smith
,
A.
,
2006
, “
Multi-Objective Optimization Using Genetic Algorithm: A Tutorial
,”
Reliab. Eng. Syst. Safety
,
91
, pp.
992
1000
.10.1016/j.ress.2005.11.018
You do not currently have access to this content.