A numerical model has been constructed to assess the depth of injury incurred when skin is exposed to heated water. The model includes an extended duration that occurs when clothing, saturated with hot water, is kept in contact with the skin after the direct exposure has ended. The model takes data from a broad summary of literature, which examines the ranges of reported tissue thicknesses, tissue thermophysical properties, and blood perfusion. Water temperatures ranging from 60°C to 90°C and total exposure durations up to 110 s were modeled. As expected, longer durations and elevated temperatures lead to a greater extent of tissue injury. For lower values of temperatures (60°C), burns range from mild (0.1 mm) to severe (2.2 mm) depending on the exposure duration. On the other hand, for higher exposure temperatures (90°C), all durations led to burns that extended at least halfway through the dermal layer. As expected, burn depths with intermediate temperatures fell between these ranges. Calculated values of tissue injury were compared with prior injury reports. These reports, taken from literature, reinforce the present calculations. It is seen that numerical models can accurately predict burn injury as assessed by clinical observations; in fact, the calculations of burn injury presented here provide more information for the appropriate treatment of burn injuries compared with visual observation. Finally, literature values of a number of skin-layer thicknesses, thermophysical properties, and burn-injury parameters were collected and presented as an archival repository of information.

1.
Merz
,
K. M.
,
Pfau
,
M.
,
Blumenstock
,
G.
,
Tenenhaus
,
M.
,
Schaller
,
H. E.
, and
Rennekampff
,
H. O.
, 2010, “
Cutaneous Microcirculatory Assessment of the Burn Wound Is Associated With the Depth of Injury and Predicts Healing Time
,”
Burns
0305-4179,
36
, pp.
477
482
.
2.
Singer
,
A. J.
,
Berutti
,
L.
,
Thode
,
H. C.
, and
McClain
,
S. A.
, 2000, “
Standardized Burn Model Using Multiparametric Histologic Analysis of Burn Depth
,”
Acad. Emerg. Med.
1069-6563,
7
, pp.
1
6
.
3.
Durant
,
C. A. T.
,
Simpson
,
A. R.
, and
Williams
,
G.
, 2008, “
Thermal Injury—the First 24 h
,”
Current Anaesthesia and Critical Care
,
19
, pp.
256
263
.
4.
Heimbach
,
D. M.
,
Afromowitz
,
M. A.
,
Engray
,
L. H.
,
Marvin
,
J. A.
, and
Perry
,
B.
, 1984, “
Burn Depth Estimation—Man or Machine
,”
J. Trauma
0022-5282,
24
, pp.
373
378
.
5.
Palla
,
R. L.
, 1981,
A Heat Transfer Analysis of Scald Injury
, National Technology Information Service, U.S. Department of Commerce,
National Bureau of Standards
,
Washington, DC
.
6.
ASTM International
, 2009, ASTM C 1055-03, Standard Guide for Heated System Surface Conditions That Produce Contact Burn Injuries.
7.
ASTM International
, 2009, ASTM C 1057-03 Standard Practice for Determination of Skin Contact Temperature From Heated Surfaces Using a Mathematical Model and Thermesthesiometer.
8.
Wu
,
Y. C.
, 1980, “
A Modified Criterion for Predicting Thermal Injury
,” National Bureau of Standards, Report No. NBSIR 81-2320.
9.
Johnson
,
M.
, and
Richard
,
R.
, 2003, “
Partial-Thickness Burns: Identification and Management
,”
Adv. Skin Wound Care
,
16
, pp.
178
187
.
10.
Monafo
,
W. W.
, 1996, “
Initial Management of Burns
,”
N. Engl. J. Med.
0028-4793,
335
, pp.
1581
1586
.
11.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
133
.
12.
Henriques
,
F. C.
, and
Moritz
,
A. R.
, 1947, “
Studies of Thermal Injury I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein. A Theoretical and Experimental Investigation
,”
Am. J. Pathol.
0002-9440,
23
, pp.
531
549
.
13.
Henriques
,
F. C.
, and
Moritz
,
A. R.
, 1947, “
Studies of Thermal Injury V. The Predictability and the Significance of Thermal Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Archives of Pathology
,
43
, pp.
489
502
.
14.
Diller
,
K. R.
, 1998, “
Modeling Thermal Skin Burns on a Personal Computer
,”
J. Burn Care Rehabil.
0273-8481,
19
, pp.
420
429
.
15.
Ng
,
E. Y. K.
,
Tan
,
H. M.
, and
Ooi
,
E. H.
, 2009, “
Boundary Element Method With Bioheat Equation for Skin Burn Injury
,”
Burns
0305-4179,
35
, pp.
987
997
.
16.
Diller
,
K. R.
,
Hayes
,
L. J.
, and
Blake
,
G. K.
, 1991, “
Analysis of Alternate Models for Simulating Thermal Burns
,”
J. Burn Care Rehabil.
0273-8481,
12
, pp.
177
189
.
17.
Ng
,
E. Y. K.
, and
Chua
,
L. T.
, 2002, “
Prediction of Skin Burn Injury. Part 1: Numerical Modeling
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
, pp.
157
170
.
18.
Ng
,
E. Y. K.
, and
Chua
,
L. T.
, 2002, “
Prediction of Skin Burn Injury. Part 2: Parametric and Sensitivity Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
, pp.
171
183
.
19.
Ng
,
E. Y. K.
, and
Chua
,
L. T.
, 2002, “
Comparison of One- and Two-Dimensional Programmes for Predicting the State of Skin Burns
,”
Burns
0305-4179,
28
, pp.
27
34
.
20.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Ramadhyani
,
S.
, 2009,
Advances in Numerical Heat Transfer 3: Numerical Implementation of Bioheat Models and Equations
,
Taylor & Francis
,
New York
.
21.
Lovik
,
R. D.
,
Abraham
,
J. P.
, and
Sparrow
,
E. M.
, 2009, “
Potential Tissue Damage From Transcutaneous Recharge of Neuromodulation Implants
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3518
3524
.
22.
Smith
,
D. K.
,
Lovik
,
R. D.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
, 2010, “
Human Tissue Temperatures Achieved During Recharging of New-Generation Neuromodulation Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
3292
3299
.
23.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Ramadhyani
,
S.
, 2007, “
Numerical Simulation of a BPH Thermal Therapy—A Case Study Involving TUMT
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
548
557
.
24.
Torvi
,
D. A.
, and
Dale
,
J. D.
, 1994, “
A Finite Element Model of Skin Subjected to a Flash Fire
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
250
255
.
25.
Diller
,
K. R.
, 1992,
Advances in Heat Transfer
, Vol.
22
,
Academic
,
New York
.
26.
Abraham
,
J. P.
, and
Sparrow
,
E. M.
, 2007, “
A Thermal Ablation Model Including Liquid-to-Vapor Phase Change, Necrosis-Dependent Perfusion, and Moisture-Dependent Properties
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2537
2544
.
27.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
, 2008, “
A Simulation of Gas-Based, Endometrial-Ablation Therapy for the Treatment of Menorrhagia
,”
Ann. Biomed. Eng.
0090-6964,
36
, pp.
171
183
.
28.
Chato
,
J.
, 1980, “
Heat Transfer to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
110
118
.
29.
Charny
,
C.
, 1992,
Advances in Heat Transfer Bioengineering Heat Transfer
, Vol.
22
,
Y.
Cho
,
J.
Harnett
, and
T.
Irvine
, eds.,
Academic
,
Boston, MA
.
30.
Gašperin
,
M.
, and
Juričic
,
D.
, 2009, “
The Uncertainty in Burn Prediction as a Result of Variable Skin Parameters: An Experimental Evaluation of Burn-Protective Outfits
,”
Burns
0305-4179,
35
, pp.
970
982
.
31.
Stoll
,
A. M.
, and
Chianta
,
M. A.
, 1971, “
Heat Transfer Through Fabrics as Related to Thermal Injury
,”
Trans. N. Y. Acad. Sci.
0028-7113,
33
, pp.
649
670
.
32.
Stoll
,
A. M.
, and
Greene
,
L. C.
, 1959, “
Relationship Between Pain and Tissue Damage Due to Thermal Radiation
,”
J. Appl. Physiol.
0021-8987,
14
, pp.
373
382
.
33.
Torvi
,
D. A.
, and
Threlfall
,
T. G.
, 2006, “
Heat Transfer Model of Flame Resistant Fabrics During Cooling After Exposure to Fire
,”
Fire Technol.
0015-2684,
42
, pp.
27
48
.
34.
Laurent
,
A.
,
Mistretta
,
F.
,
Bottigioli
,
D.
,
Dahel
,
K.
,
Goujon
,
C.
,
Nicolas
,
J. F.
,
Hennino
,
A.
, and
Laurent
,
P. E.
, 2007, “
Echographic Measurement of Skin Thickness in Adults by High Frequency Ultrasound to Assess the Appropriate Microneedle Length for Intradermal Delivery of Vaccines
,”
Vaccine
0264-410X,
25
, pp.
6423
6430
.
35.
Sandby-Møller
,
J.
,
Poulsen
,
T.
, and
Wulf
,
H. C.
, 2003, “
Epidermal Thickness at Different Body Sites: Relationship to Age, Gender, Pigmentation, Blood Content, Skin Type, and Smoking Habits
,”
Acta Derm Venereol
0001-5555,
83
, pp.
410
413
.
36.
Whitton
,
J. T.
, and
Everall
,
J. D.
, 1973, “
The Thickness of the Epidermis
,”
Br. J. Dermatol.
0007-0963,
89
, pp.
467
476
.
37.
Southwood
,
E.
, 1955, “
The Thickness of the Skin
,”
Plast. Reconstr. Surg.
0032-1052,
15
, pp.
423
429
.
38.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L.
, 1999, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
, pp.
420
428
.
39.
Jiang
,
S.
,
Ma
,
N.
,
Li
,
H.
, and
Zhang
,
X.
, 2002, “
Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries
,”
Burns
0305-4179,
28
, pp.
713
717
.
40.
Liu
,
K. C.
, and
Cheng
,
P. J.
, 2008, “
Finite Propagation of Heat Transfer in a Multilayer Tissue
,”
J. Thermophys. Heat Transfer
0887-8722,
22
, pp.
775
782
.
41.
Cohen
,
M. L.
, 1977, “
Measurement of the Thermal Properties of Human Skin. A Review
,”
J. Invest. Dermatol.
0022-202X,
69
, pp.
333
338
.
42.
Bowman
,
H. F.
,
Cravalho
,
E. G.
, and
Woods
,
M.
, 1975, “
Theory, Measurement, and Application of Thermal Properties of Biomaterials
,”
Annu. Rev. Biophys. Bioeng.
0084-6589,
4
, pp.
43
80
.
43.
Dai
,
W.
,
Wang
,
H.
,
Jordan
,
P. M.
,
Mickens
,
R. E.
, and
Bejan
,
A.
, 2008, “
A Mathematical Model for Skin Burn Injury Induced by Radiation Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5497
5510
.
44.
Xu
,
F.
,
Lu
,
T. J.
, and
Steffen
,
K. A.
, 2008, “
Biothermomechanics of Skin Tissues
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
1852
1884
.
45.
He
,
X.
,
McGee
,
S.
,
Coad
,
J. E.
,
Schmidlin
,
F.
,
Iaizzo
,
P. A.
,
Swanlund
,
D. J.
,
Kluge
,
S.
,
Rudie
,
E.
, and
Bischof
,
J. C.
, 2004, “
Investigation of the Thermal and Tissue Injury Behavior in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperthermia
0265-6736,
20
, pp.
567
593
.
46.
Wright
,
N. T.
, 2003, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
300
394
.
47.
Tropea
,
B. I.
, and
Lee
,
R. C.
, 1992, “
Thermal Injury Kinetics in Electrical Trauma
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
241
250
.
48.
Taylor
,
D.
, 1989, “
Physical Mechanisms of Cellular Injury in Electrical Trauma
,” Ph.D. thesis, MIT, Cambridge, MA.
49.
Moussa
,
N.
, and
McGrath
,
J.
, 1977, “
Kinetics of Thermal Injury in Cells
,”
ASME J. Biomech. Eng.
0148-0731,
99
, pp.
155
159
.
50.
Takata
,
A.
, 1974, “
Development of Criterion for Skin Burns
,”
Aerosp. Med.
0001-9402,
45
, pp.
634
637
.
51.
Weaver
,
J. A.
, and
Stoll
,
A. M.
, 1969, “
A Mathematical Model of Skin Exposed to Thermal Radiation
,”
Aerosp. Med.
0001-9402,
40
, pp.
24
30
.
52.
Mehta
,
A. K.
, and
Wong
,
F.
, 1973, “
Measurement of Flammability and Burn Potential of Fabrics
,” NTIS, Technical Report No. COM-73-10950.
53.
Fugitt
,
C. E.
, 1955, “
A Rate Process of Thermal Injury
,” Armed Forces Special Weapons Project, Report No. AFSWP-606.
54.
Weaver
,
J. A.
, and
Stoll
,
A. M.
, 1967, “
Mathematical Model of Skin Exposed to Thermal Radiation
,” National Air Defense Command Memo, Report No. 6708.
55.
Knabla
,
J. S.
,
Bayera
,
G. S.
,
Bauera
,
W. A.
,
Schwendenweinc
,
I.
,
Dadoa
,
P. F.
,
Kucherc
,
C.
,
Horvatb
,
R.
,
Turkofa
,
E.
,
Schossmannd
,
B.
, and
Meissla
,
G.
, 1999, “
Controlled Partial Thickness Burns: An Animal Model for Studies of Burn Wound Progression
,”
Burns
0305-4179,
25
, pp.
229
235
.
56.
Moritz
,
A. R.
, and
Henriques
,
F. C.
, 1947, “
Studies of Thermal Injury II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
0002-9440,
23
, pp.
695
720
.
57.
Ross
,
D. C.
, and
Diller
,
K. R.
, 1976, “
An Experimental Investigation of Burn Injury in Living Tissue
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
292
296
.
You do not currently have access to this content.