Abstract

This article designs and analyzes a combined cooling, heating, and power system based on the step utilizing liquefied natural gas cold energy and steam methane reforming flue gas waste heat. The system performance is evaluated through thermodynamic analysis, exergoeconomic analysis, and multi-objective optimization of the system. The influence of the turbine inlet pressure P4, split ratio x, and mole fraction of carbon tetrafluoride NR14 on the system performance is analyzed. The results show that increasing P4 and T10 can improve the net work output, the thermal efficiency, the exergy efficiency, and lower the average unit cost. Reducing x, P14, and NR14 can reduce the average unit cost, and improve the exergy efficiency. The system energy is mainly distributed in the heat exchangers. In the actual optimal state, the thermal efficiency, exergy efficiency, and average unit cost of the system are 72.35%, 52.16%, and 31.24 $/GJ, the annual net economic value is 1.507 × 106 $, and the discounted payback period is 3.38 years. The research results are conducive to capturing carbon dioxide from flue gas, saving resources, and protecting the environment.

References

1.
Zhang
,
J.
,
Meerman
,
H.
,
Benders
,
R.
, and
Faaij
,
A.
,
2020
, “
Comprehensive Review of Current Natural Gas Liquefaction Processes on Technical and Economic Performance
,”
Appl. Therm. Eng.
,
166
(
C
), p.
114736
.
2.
Chakravarthy
,
V. S.
,
Shah
,
R. K.
, and
Venkatarathnam
,
G.
,
2011
, “
A Review of Refrigeration Methods in the Temperature Range 4–300 K
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
020801
.
3.
Pospíšil
,
J.
,
Charvát
,
P.
,
Arsenyeva
,
O.
,
Klimeš
,
L.
,
Špiláček
,
M.
, and
Klemeš
,
J. J.
,
2019
, “
Energy Demand of Liquefaction and Regasification of Natural Gas and the Potential of LNG for Operative Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
99
, pp.
1
15
.
4.
Yan
,
M.
,
Pan
,
Z.
,
Shang
,
L.
,
Zhou
,
L.
, and
Yu
,
J.
,
2022
, “
Numerical Simulation and Comparative Analysis of Three Boil-Off Gas Reliquefaction Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081017
.
5.
He
,
T.
,
Chong
,
Z. R.
,
Zheng
,
J.
,
Ju
,
Y.
, and
Linga
,
P.
,
2019
, “
LNG Cold Energy Utilization: Prospects and Challenges
,”
Energy
,
170
, pp.
557
568
.
6.
Kanbur
,
B. B.
,
Xiang
,
L.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2017
, “
Cold Utilization Systems of LNG: A Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1171
1188
.
7.
Farrukh
,
S.
,
Wu
,
D.
,
Al-Dadah
,
R.
,
Gao
,
W.
, and
Wang
,
Z.
,
2023
, “
A Review of Integrated Cryogenic Energy Assisted Power Generation Systems and Desalination Technologies
,”
Appl. Therm. Eng.
,
221
, p.
119836
.
8.
Haffejee
,
R. A.
,
Rousseau
,
P.
, and
Laubscher
,
R.
,
2024
, “
Integrated Performance of a Modular Biomass Boiler With a Combined Heat and Power Industrial Rankine Cycle and Supplementary sCO2 Brayton Cycle
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
9
), p.
091001
.
9.
Carapellucci
,
R.
, and
Giordano
,
L.
,
2019
, “
Upgrading Existing Gas-Steam Combined Cycle Power Plants Through Steam Injection and Methane Steam Reforming
,”
Energy
,
173
, pp.
229
243
.
10.
Su
,
B.
,
Wang
,
Y.
,
Xu
,
Z.
,
Han
,
W.
,
Jin
,
H.
, and
Wang
,
H.
,
2022
, “
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated With Carbon Capture
,”
Energy Convers. Manage.
,
270
, p.
116199
.
11.
Liu
,
W.
,
Chen
,
G.
,
Yan
,
B.
,
Zhou
,
Z.
,
Du
,
H.
, and
Zuo
,
J.
,
2015
, “
Hourly Operation Strategy of a CCHP System With GSHP and Thermal Energy Storage (TES) Under Variable Loads: A Case Study
,”
Energy Build.
,
93
, pp.
143
153
.
12.
Yin
,
G.
,
Yuan
,
T.
,
Li
,
D.
,
Zhang
,
C.
, and
Deng
,
Z.
,
2024
, “
Thermodynamic Optimization of a Combined Cooling and Power System Utilizing Industrial Waste Heat
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
10
), p.
104501
.
13.
Oyekale
,
J.
, and
Mgbemena
,
C.
,
2023
, “
Thermodynamic Optimization of Subcritical and Supercritical Organic Rankine Cycle Power Plants for Waste Heat Recovery in Marine Vessels
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), p.
031010
.
14.
Choi
,
M.
,
Lim
,
J.
,
Lee
,
I.
, and
Kim
,
J.
,
2024
, “
Carbon Neutral Design of Waste Energy Recovery System for LNG Power Plant Using Organic Rankine Cycle
,”
Int. J. Energy Res.
,
2024
(
1
), p.
7895267
.
15.
Saladi
,
J. K.
,
Suresh
,
R.
, and
Datta
,
S. P.
,
2024
, “
Thermo-Economic Investigation on Organic Rankine Cycle Based Solar Integrated Ejector-Trigeneration System (EORC-CCHP) for Indian Climate
,”
Int. Commun. Heat Mass Transfer
,
158
, p.
107865
.
16.
He
,
T.
,
Ma
,
J.
,
Mao
,
N.
,
Qi
,
M.
, and
Jin
,
T.
,
2024
, “
Exploring the Stability and Dynamic Responses of Dual-Stage Series ORC Using LNG Cold Energy for Sustainable Power Generation
,”
Appl. Energy
,
372
, p.
123735
.
17.
Yang
,
X. L.
,
Lei
,
Q.
,
Zou
,
J.
,
Lu
,
X.
, and
Chen
,
Z.
,
2023
, “
Green and Efficient Recovery and Optimization of Waste Heat and LNG Cold Energy in LNG-Powered Ship Engines
,”
Energies
,
16
(
24
), p.
7957
.
18.
Xue
,
F.
,
Chen
,
Y.
, and
Ju
,
Y.
,
2017
, “
Design and Optimization of a Novel Cryogenic Rankine Power Generation System Employing Binary and Ternary Mixtures as Working Fluids Based on the Cold Exergy Utilization of Liquefied Natural Gas (LNG)
,”
Energy
,
138
, pp.
706
720
.
19.
Joy
,
J.
, and
Chowdhury
,
K.
,
2022
, “
Appropriate Number of Stages of an ORC Driven by LNG Cold Energy to Produce Acceptable Power With Reasonable Surface Area of Heat Exchangers
,”
Cryogenics
,
128
, p.
103599
.
20.
Cao
,
Y.
,
Dhahad
,
H. A.
,
Hussen
,
H. M.
,
Attia
,
E. A.
,
Rashidi
,
S.
,
Shamseldin
,
M. A.
,
Almojil
,
S. F.
,
Almohana
,
A. I.
, and
Alali
,
A. F.
,
2022
, “
Techno-Economic Investigation and Multi-Criteria Optimization of a Novel Combined Cycle Based on Biomass Gasifier, S-CO2 Cycle, and Liquefied Natural Gas for Cold Exergy Usage
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102187
.
21.
Li
,
T.
,
Gao
,
R.
,
Wang
,
J.
,
Zhang
,
Y.
, and
Jin
,
F.
,
2024
, “
Synergetic Characteristic of a Novel Thermally-Driven CCHP System Based on Supercritical and Transcritical CO2 Cycles
,”
Appl. Therm. Eng.
,
236
, p.
121727
.
22.
Qiao
,
Y.
,
Jiang
,
W.
,
Li
,
Y.
,
Dong
,
X.
, and
Yang
,
F.
,
2024
, “
Design and Analysis of Steam Methane Reforming Hydrogen Liquefaction and Waste Heat Recovery System Based on Liquefied Natural Gas Cold Energy
,”
Energy
,
25
, p.
131792
.
23.
Fang
,
Z.
,
Pan
,
Z.
,
Ma
,
G.
,
Yu
,
J.
,
Shang
,
L.
, and
Zhang
,
Z.
,
2023
, “
Exergoeconomic, Exergoenvironmental Analysis and Multi-Objective Optimization of a Novel Combined Cooling, Heating and Power System for Liquefied Natural Gas Cold Energy Recovery
,”
Energy
,
269
, p.
126752
.
24.
Fang
,
Z.
,
Shang
,
L.
,
Pan
,
Z.
,
Yao
,
X.
,
Ma
,
G.
, and
Zhang
,
Z.
,
2021
, “
Exergoeconomic Analysis and Optimization of a Combined Cooling, Heating and Power System Based on Organic Rankine and Kalina Cycles Using Liquified Natural Gas Cold Energy
,”
Energy Convers. Manage
,
238
, p.
114148
.
25.
Chen
,
S.
,
Shen
,
Y.
,
Qiu
,
C.
,
Tao
,
X.
,
Wan
,
A.
,
Zhang
,
Z.
, and
Gan
,
Z.
,
2024
, “
Multi-objective Optimization of a Hydrogen Liquefaction Process Coupled With Mixed Refrigerant Cycle and Steam Methane Reforming
,”
Int. J. Hydrogen Energy
,
58
, pp.
797
805
.
26.
Faramarzi
,
S.
,
Nainiyan
,
S. M. M.
,
Mafi
,
M.
, and
Ghasemiasl
,
R.
,
2021
, “
A Novel Hydrogen Liquefaction Process Based on LNG Cold Energy and Mixed Refrigerant Cycle
,”
Int. J. Refrig.
,
131
, pp.
263
274
.
27.
Hoseinzadeh
,
S.
,
Yargholi
,
R.
,
Kariman
,
H.
, and
Heyns
,
P. S.
,
2020
, “
Exergoeconomic Analysis and Optimization of Reverse Osmosis Desalination Integrated With Geothermal Energy
,”
Environ. Prog. Sustainable Energy
,
39
(
5
), p.
e13405
.
28.
Mosaffa
,
A. H.
,
Mokarram
,
N. H.
, and
Farshi
,
L. G.
,
2017
, “
Thermo-Economic Analysis of Combined Different ORCs Geothermal Power Plants and LNG Cold Energy
,”
Geothermics
,
65
, pp.
113
125
.
29.
Sun
,
Y.
,
Li
,
H.
,
Wang
,
D.
, and
Du
,
C.
,
2024
, “
Comprehensive Exergoeconomic Analysis and Optimization of a Novel Zero-Carbon-Emission Multi-generation System Based on Carbon Dioxide Cycle
,”
J. Therm. Sci.
,
33
(
3
), pp.
1065
1081
.
30.
Yang
,
X. Y.
, and
Zhao
,
H. B.
,
2019
, “
Thermodynamic Performance Study of the SOFC-STIG Distributed Energy System Fueled by LNG With CO2 Recovery
,”
Energy
,
186
, p.
115860
.
31.
Wang
,
J.
,
Mao
,
T.
, and
Wu
,
J.
,
2017
, “
Modified Exergoeconomic Modeling and Analysis of Combined Cooling Heating and Power System Integrated With Biomass-Steam Gasification
,”
Energy
,
139
, pp.
871
882
.
32.
Ghaebi
,
H.
,
Parikhani
,
T.
, and
Rostamzadeh
,
H.
,
2018
, “
A Novel Trigeneration System Using Geothermal Heat Source and Liquefied Natural Gas Cold Energy Recovery: Energy, Exergy and Exergoeconomic Analysis
,”
Renewable Energy
,
119
, pp.
513
527
.
33.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
.
34.
Khani
,
L.
,
Mahmoudi
,
S. M.
,
Chitsaz
,
A.
, and
Rosen
,
M. A.
,
2016
, “
Energy and Exergoeconomic Evaluation of a New Power/Cooling Cogeneration System Based on a Solid Oxide Fuel Cell
,”
Energy
,
94
, pp.
64
77
.
35.
Hamdy
,
S.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Exergoeconomic Optimization of an Adiabatic Cryogenics-Based Energy Storage System
,”
Energy
,
183
, pp.
812
824
.
36.
Sun
,
W.
,
Pan
,
Y.
,
Pan
,
Z.
,
Shang
,
L.
,
Zhou
,
L.
, and
Lv
,
Z.
,
2023
, “
Comparative Analysis of Two Cogeneration Systems With Different Connection Modes
,”
Process Saf. Environ. Prot.
,
177
, pp.
1440
1460
.
37.
Bai
,
W.
,
Li
,
H.
,
Zhang
,
X.
,
Qiao
,
Y.
,
Zhang
,
C.
,
Gao
,
W.
, and
Yao
,
M.
,
2022
, “
Thermodynamic Analysis of CO2–SF6 Mixture Working Fluid Supercritical Brayton Cycle Used for Solar Power Plants
,”
Energy
,
261
, p.
124780
.
38.
Zhou
,
A. Z.
,
Li
,
X. S.
,
Ren
,
X. D.
, and
Gu
,
C. W.
,
2020
, “
Improvement Design and Analysis of a Supercritical CO2/Transcritical CO2 Combined Cycle for Offshore Gas Turbine Waste Heat Recovery
,”
Energy
,
210
, p.
118562
.
39.
Ozen
,
D. N.
, and
İbrahim
,
U.
,
2020
, “
Energy, Exergy, and Exergo-Economic Analysis of a Novel Combined Power System Using the Cold Energy of Liquified Natural Gas (LNG)
,”
Environ. Prog. Sustainable Energy
,
39
(
4
), p.
e13377
.
40.
Sun
,
W.
,
Shang
,
L.
,
Pan
,
Z.
,
Liu
,
P.
,
Cui
,
X.
,
Zhu
,
J.
, and
Sun
,
X.
,
2022
, “
Performance Analysis and Optimization of a Novel Combined Cooling, Heating, and Power System-Integrated Rankine Cycle and Brayton Cycle Utilizing the Liquified Natural Gas Cold Energy
,”
Energy Technol.
,
10
(
11
), p.
2200632
.
41.
Ghaebi
,
H.
,
Amin
,
S. N.
, and
Hadi
,
R.
,
2018
, “
Exergoeconomic Optimization of a Novel Cascade Kalina/Kalina Cycle Using Geothermal Heat Source and LNG Cold Energy Recovery
,”
J. Cleaner Prod.
,
189
, pp.
279
296
.
42.
Yao
,
S. G.
,
Li
,
C.
, and
Wei
,
Y.
,
2023
, “
Design and Optimization of a Zero Carbon Emission System Integrated With the Utilization of Marine Engine Waste Heat and LNG Cold Energy for LNG-Powered Ships
,”
Appl. Therm. Eng
,
231
, p.
120976
.
43.
Sun
,
D.
,
Liu
,
Z.
,
Zhang
,
H.
, and
Zhang
,
X.
,
2024
, “
Performance Analysis of a New ORC-VCC System With Mechanical Overheating and Correlation Fitting of Most Important System Parameter
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
1
), p.
011008
.
44.
Idrissa
,
A. K. M.
, and
Boulama
,
K. G.
,
2019
, “
Advanced Exergy Analysis of a Combined Brayton/Brayton Power Cycle
,”
Energy
,
166
, pp.
724
737
.
You do not currently have access to this content.