Abstract

Swirl burner is widely used in boilers due to its high combustion efficiency. The swirl blade deflection angle affects the combustion and emission characteristics of the boiler. In this study, based on the experimental data and numerical simulation, a method for adjusting the outlet flow direction of the swirl burner is proposed through a self-defined angle. The numerical simulation is focused on the combustion process of a 330 t/h subcritical boiler. The results indicate that increasing β angle raises the overall furnace temperature when α angle = 30 deg, the average maximum temperature reaches 1611 K, and the average NOx concentration is stable at about 8 mg/m3, though this setup is less effective for gas mixing. When α = 0 deg, the temperature distribution is uniform and lower than the temperature distribution when α = 30 deg. Adjusting β angle has minimal impact on the temperature, but as β angle increases, the NOx concentration decreases, dropping to 6.5 mg/m3 at α = 30 deg. When β angle exceeds 45 deg, its influence on NOx generation is weakened. Conversely, at α = −30 deg, the high-temperature region is concentrated, resulting in an overall temperature below α = 0 deg. This results in an uneven heat load on the furnace wall and a stable average NOx concentration of about 4 mg/m3.

References

1.
Hou
,
S. S.
, and
Chou
,
C. H.
,
2013
, “
Parametric Study of High-Efficiency and Low-Emission Gas Burners
,”
Adv. Mater. Sci. Eng.
,
2013
(
1687-8434
), p.
154957
.
2.
Kim
,
I.
,
Kim
,
J.
,
Choe
,
Y.
,
Ryu
,
K.
,
Cha
,
J.
, and
Ri
,
J.
,
2023
, “
Effect of Vane Angle on Combustion Characteristics of Premixed H2/Air in Swirl Micro-Combustors With Straight Vane or Twisted Vane
,”
Appl. Therm. Eng.
,
228
, p.
120528
.
3.
Badiger
,
S.
,
Katti
,
V. V.
,
Hindasageri
,
V.
, and
Anil
,
T. R.
,
2020
, “
Effect of Burner Geometry on Heat Transfer Characteristics of an Impinging Inverse Diffusion Flame Jet With Swirl
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
45
(
1
), pp.
215
228
.
4.
Ju
,
H. J.
,
Cho
,
J. H.
, and
Hwang
,
J.
,
2022
, “
Numerical Analysis of Flow Characteristics of a Swirl-Stabilized Premixed Burner With Different Swirl Vane Configurations
,”
J. Mech. Sci. Technol.
,
36
(
11
), pp.
5793
5800
.
5.
Liu
,
T. Y.
,
2024
, “
Numerical Study on the Application of Pressure-Swirl Atomizing Nozzles in a Direct Air Cooling Condenser of the Power Plant
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021002
.
6.
Kweon
,
K. J.
, and
Jo
,
J. K.
,
2003
, “
The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner With a Cone-Type Baffle Plate
,”
Trans. Korean Soc. Mech. Eng. B
,
27
(
4
), pp.
466
475
.
7.
Kim
,
J. K.
,
2004
, “
Experimental Investigation on the Turbulence Augmentation of a Gun-Type Gas Burner by Slits and Swirl Vanes
,”
J. Mech. Sci. Technol.
,
18
(
10
), pp.
1819
1828
.
8.
Chiong
,
M.-C.
,
Valera-Medina
,
A.
,
Chong
,
W. W. F.
,
Chong
,
C. T.
,
Mong
,
G. R.
, and
Mohd Jaafar
,
M. N.
,
2020
, “
Effects of Swirler Vane Angle on Palm Biodiesel/Natural Gas Combustion in Swirl-Stabilised Gas Turbine Combustor
,”
Fuel
,
277
, p.
118213
.
9.
Ahmadvand
,
M.
,
Najafi
,
A. F.
, and
Shahidinejad
,
S.
,
2010
, “
An Experimental Study and CFD Analysis Towards Heat Transfer and Fluid Flow Characteristics of Decaying Swirl Pipe Flow Generated by Axial Vanes
,”
Meccanica
,
45
(
1
), pp.
111
129
.
10.
Jing
,
L.
,
Zhao
,
J.
,
Wang
,
H.
,
Li
,
W.
,
Du
,
Y.
,
Zhu
,
Q.
, and
Zayed
,
M. E.
,
2022
, “
Numerical Analysis of the Effect of Swirl Angle and Fuel Equivalence Ratio on the Methanol Combustion Characteristics in a Swirl Burner
,”
Process Saf. Environ. Prot.
,
158
, pp.
320
330
.
11.
Huang
,
L.
,
Liu
,
C.
,
Deng
,
T.
,
Jiang
,
H.
, and
Wu
,
P.
,
2020
, “
Experimental Investigation on the Influence of Central Airflow on Swirl Combustion Stability and Flame Shape
,”
J. Therm. Anal. Calorim.
,
144
(
2
), pp.
503
514
.
12.
Yellugari
,
K.
,
Gomez
,
R. V.
, and
Gutmark
,
E.
,
2023
, “
Effects of Swirl Number and Central Rod on Flow in a Lean Premixed Swirl Combustor
,”
Combust. Sci. Technol
,
197
(
5
), pp.
999
1027
.
13.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
, et al
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio
,”
ASME J. Turbomach
,
144
(
2
), p.
021011
.
14.
Belal
,
B. Y.
,
Li
,
G.
,
Zhang
,
Z.
,
El-Batsh
,
H. M.
,
Moneib
,
H. A.
, and
Attia
,
A. M. A.
,
2021
, “
The Effect of Swirl Burner Design Configuration on Combustion and Emission Characteristics of Lean Pre-Vaporized Premixed Flames
,”
Energy
,
228
, p.
120622
.
15.
Ko
,
D. G.
, and
Yoon
,
S. J.
,
2015
, “
Effect of the Swirl Number of Spinner on the Exhaust Air of the Gun Type Burner
,”
J. ILASS-Korea
,
20
(
2
), pp.
70
75
.
16.
Jarpala
,
R.
,
Aditya Burle
,
N. V. S.
,
Voleti
,
M.
, and
Sadanandan
,
R.
,
2017
, “
Effect of Swirl on the Flame Dynamics and Pollutant Emissions in an Ultra-Lean Non-Premixed Model Gas Turbine Burner
,”
Combust. Sci. Technol.
,
189
(
10
), pp.
1832
1848
.
17.
Zhou
,
H.
, and
Hu
,
L. B.
,
2023
, “
Mitigation of Combustion Instability and NOx Emissions by Microjets in Lean Premixed Flames With Different Swirl Numbers
,”
J. Therm. Sci.
,
32
(
4
), pp.
1697
1709
.
18.
Adzic
,
M.
,
Zivkovic
,
M.
,
Fotev
,
V.
,
Milivojevic
,
A.
, and
Adzic
,
V.
,
2010
, “
Influential Parameters of Nitrogen Oxides Emissions for Microturbine Swirl Burner With Pilot Burner
,”
Hem. Ind.
,
64
(
4
), pp.
357
363
.
19.
Gürbüz
,
H.
,
Akçay
,
I. H.
, and
Buran
,
D.
,
2014
, “
An Investigation on Effect of In-Cylinder Swirl Flow on Performance, Combustion and Cyclic Variations in Hydrogen Fuelled Spark Ignition Engine
,”
J. Energy Inst.
,
87
(
1
), pp.
1
10
.
20.
Zhou
,
H.
,
Yang
,
Y.
,
Liu
,
H.
, and
Hang
,
Q.
,
2014
, “
Numerical Simulation of the Combustion Characteristics of a Low NOx Swirl Burner: Influence of the Primary Air Pipe
,”
Fuel
,
130
, pp.
168
176
.
21.
Xu
,
M.
, and
Azevedo
,
J. L. T.
,
2024
, “
Simulation of Heat and Mass Transfer in a Moving Bed Part-Fluidized Boiler
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p. 031004.
22.
Pattanashetti
,
A.
, and
Santhosh
,
R.
,
2024
, “
Experimental and Numerical Investigation of Methane/Air and Biogas/Air Coflow Flames in a Confined Coaxial Burner
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
8
), p. 081004.
23.
Xu
,
M.
,
Azevedo
,
J. L. T.
, and
Carvalho
,
M. G.
,
2001
, “
Modeling of a Front Wall Fired Utility Boiler for Different Operating Conditions
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
28
), pp.
3581
3590
.
24.
Vuthaluru
,
R.
, and
Vuthaluru
,
H. B.
,
2006
, “
Modelling of a Wall Fired Furnace for Different Operating Conditions Using Fluent
,”
Fuel Process. Technol.
,
87
(
7
), pp.
633
639
.
25.
Zhong
,
Y.-X.
,
Wang
,
X.
,
Xu
,
G.
,
Ning
,
X.
,
Zhou
,
L.
,
Tang
,
W.
,
Wang
,
M.-H.
, et al.
,
2023
, “
Investigation on Slagging and High-Temperature Corrosion Prevention and Control of a 1000 MW Ultra Supercritical Double Tangentially Fired Boiler
,”
Energy
,
275
, p.
127455
.
26.
Yu
,
C.
,
Xiong
,
W.
,
Ma
,
H.
,
Zhou
,
J.
,
Si
,
F.
,
Jiang
,
X.
, and
Fang
,
X.
,
2019
, “
Numerical Investigation of Combustion Optimization in a Tangential Firing Boiler Considering Steam Tube Overheating
,”
Appl. Therm. Eng.
,
154
, pp.
87
101
.
27.
Hanson
,
R. K.
, and
Salimian
,
S.
,
1984
, “Survey of Rate Constants in the N/H/O System,”
Combustion Chemistry
,
W. C.
Gardiner
, ed.,
Springer New York
,
New York
, pp.
361
421
.
28.
Liu
,
H.
,
Zhang
,
L.
,
Han
,
X.
,
Zhou
,
S.
,
Yu
,
P.
, and
Che
,
D.
,
2020
, “
Effects of Lignite Predrying Degree on the Combustion and NO Generation in a 600-MW Lignite-Fired Boiler
,”
J. Energy Eng.
,
146
(
6
), p.
04020070
.
You do not currently have access to this content.