Abstract

In this study, highly conductive nanoparticles, known for their superior heat transfer enhancement in bulk domains, were incorporated into three-dimensional nanofluids containing multiwalled carbon nanotubes (MWCNTs). This study measures the thermal conductivity of deionized (DI) water and MWCNT-water nanofluids, revealing a significant improvement with the nanofluid. At the start of the process, a magnetic stirrer is employed to disperse the nanoparticles in DI water. Although various factors influencing the boiling performance of nanofluids were extensively examined, the combined effects of CNT concentration and sonication time remain relatively unexplored. To address this gap, the influence of coatings formed by different carbon nanotubes (CNTs) on boiling heat transfer was studied. Experiments analyzed boiled surface properties, including contact angle, scanning electron microscopic (SEM) morphology, and surface roughness. Flow patterns were recorded with a high-speed, high-resolution camera. The findings suggest that the heat transfer characteristics of MWCNT nanofluids and the surfaces coated with MWCNT deposits are superior to those of bare surfaces. The MWCNT-water nanofluid demonstrated enhanced thermal conductivity, leading to improved boiling performance. The boiling performance of deionized water on MWCNT-deposited nanocoated surfaces demonstrated improved characteristics comparable to the boiling performance of equivalent nanofluids on bare surfaces. In addition to enhancing the thermophysical properties of nanofluids, higher concentrations of MWCNT nanofluids increased the effective heat transfer area and surface roughness of the coated surfaces. These advancements led to improved bubble behavior and a more efficient heat transfer performance in the two-phase boiling regime.

References

1.
Fang
,
X.
,
Chen
,
Y.
,
Zhang
,
H.
,
Chen
,
W.
,
Dong
,
A.
, and
Wang
,
R.
,
2016
, “
Heat Transfer and Critical Heat Flux of Nanofluid Boiling: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
924
940
.
2.
Fang
,
X.
,
Wang
,
R.
,
Chen
,
W.
,
Zhang
,
H.
, and
Ma
,
C.
,
2015
, “
A Review of Flow Boiling Heat Transfer of Nanofluids
,”
Appl. Therm. Eng.
,
91
, pp.
1003
1017
.
3.
Babar
,
H.
,
Wu
,
H.
,
Zhang
,
W.
,
Shah
,
T. R.
,
McCluskey
,
D.
, and
Zhou
,
C.
,
2024
, “
The Promise of Nanofluids: A Bibliometric Journey Through Advanced Heat Transfer Fluids in Heat Exchanger Tubes
,”
Adv. Colloid Interface Sci.
,
320
, p.
103112
.
4.
Eneren
,
P.
,
Aksoy
,
Y. T.
, and
Vetrano
,
M. R.
,
2023
, “
Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels
,”
Energies
,
16
(
23
), p.
7885
.
5.
Mehta
,
B.
,
Subhedar
,
D.
,
Panchal
,
H.
, and
Said
,
Z.
,
2022
, “
Synthesis, Stability, Thermophysical Properties and Heat Transfer Applications of Nanofluid—A Review
,”
J. Mol. Liq.
,
364
, p.
120034
.
6.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4051
4068
.
7.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
8.
Peng
,
C.
,
Song
,
Y.
,
Deng
,
J.
,
Wu
,
J.
,
Chen
,
H.
, and
Liu
,
F.
,
2024
, “
The Influence of Suspension and Deposition on Pool Boiling Heat Transfer of Nanofluids: Experiment and Engineering Model Study
,”
Int. J. Heat Mass Transfer
,
227
, p.
125614
.
9.
He
,
K.
,
Chen
,
J.
,
Yu
,
J.
,
Liang
,
L.
, and
Tian
,
Z. Q.
,
2024
, “
The Mechanism of Boiling Heat Transfer of Polycarboxylate Superplasticizer Modified Stereotaxically Constructed Graphene Water-Based Nanofluid: Experiment and Molecular Dynamics Simulation
,”
Appl. Therm. Eng.
,
246
, p.
122956
.
10.
Sarafraz
,
M.
,
Hormozi
,
F.
,
Peyghambarzadeh
,
S. M.
, and
Vaeli
,
N.
,
2015
, “
Upward Flow Boiling to DI-Water and CuO Nanofluids Inside the Concentric Annuli
,”
Int. Commun. Heat Mass Transfer
,
67
, pp.
14
22
.
11.
Moreira
,
T. A.
,
do Nascimento
,
F. J.
, and
Ribatski
,
G.
,
2015
, “
Flow Boiling of Nanofluids of Water and Al
,”
9th International Conference on Boiling and Condensation Heat Transfer
,
Boulder, CO
,
Apr. 26–29
.
12.
Setoodeh
,
H.
,
Keshavarz
,
A.
,
Ghasemian
,
A.
, and
Nasouhi
,
A.
,
2015
, “
Subcooled Flow Boiling of Alumina/Water Nanofluid in a Channel With a Hot Spot: An Experimental Study
,”
Appl. Therm. Eng.
,
90
, pp.
384
394
.
13.
Salari
,
E.
,
Peyghambarzadeh
,
M.
,
Sarafraz
,
M. M.
, and
Hormozi
,
F.
,
2016
, “
Boiling Heat Transfer of Alumina Nano-Fluids: Role of Nanoparticle Deposition on the Boiling Heat Transfer Coefficient
,”
Period. Polytech. Chem. Eng.
,
60
(
4
), pp.
252
258
.
14.
Tazarv
,
S.
,
Saffar-Avval
,
M.
,
Khalvati
,
F.
,
Mirzaee
,
E.
, and
Mansoori
,
Z.
,
2016
, “
Experimental Investigation of Saturated Flow Boiling Heat Transfer to TiO
2
/R141b Nanorefrigerant
,”
Exp. Heat Transf.
,
29
(
2
), pp.
188
204
.
15.
Zhu
,
D.
,
Li
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Gao
,
J.
, and
Li
,
H.
,
2009
, “
Dispersion Behavior and Thermal Conductivity Characteristics of Al
2
O
3
–H
2
O Nanofluids
,”
Curr. Appl. Phys.
,
9
(
1
), pp.
131
139
.
16.
Li
,
X.
,
Zhu
,
D.
, and
Wang
,
X.
,
2007
, “
Evaluation on Dispersion Behavior of the Aqueous Copper Nano-Suspensions
,”
J. Colloid Interface Sci.
,
310
(
2
), pp.
456
463
.
17.
Hwang
,
Y.
,
Lee
,
J.-K.
,
Lee
,
J.-K.
,
Jeong
,
Y.-M.
,
Cheong
,
S.-I.
,
Ahn
,
Y.-C.
, and
Kim
,
S. H.
,
2008
, “
Production and Dispersion Stability of Nanoparticles in Nanofluids
,”
Powder Technol.
,
186
(
2
), pp.
145
153
.
18.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
19.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
,
Yoo
,
J.
, and
You
,
S. M.
,
2010
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
972
981
.
20.
Diao
,
Y.
,
Liu
,
Y.
,
Wang
,
R.
,
Zhao
,
Y.
, and
Guo
,
L.
,
2014
, “
Experimental Investigation of the Cu/R141b Nanofluids on the Evaporation/Boiling Heat Transfer Characteristics for Surface With Capillary Micro-Channels
,”
Heat Mass Transfer
,
50
(
9
), pp.
1261
1274
.
21.
Okawa
,
T.
,
Takamura
,
M.
, and
Kamiya
,
T.
,
2012
, “
Boiling Time Effect on CHF Enhancement in Pool Boiling of Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2719
2725
.
22.
Aksoy
,
Y. T.
,
Enayati
,
F.
,
Eneren
,
P.
, and
Vetrano
,
M. R.
,
2025
, “
Experimental Study on Enhanced Heat Transfer via Nanoparticle Depositions Using TiO
2
-Water Nanofluid Sprays
,”
Appl. Therm. Eng.
,
264
, p.
125450
.
23.
Wen
,
D.
,
Corr
,
M.
,
Hu
,
X.
, and
Lin
,
G.
,
2011
, “
Boiling Heat Transfer of Nanofluids: The Effect of Heating Surface Modification
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
480
485
.
24.
Liu
,
Z.-H.
,
Yang
,
X.-F.
, and
Xiong
,
J.-G.
,
2010
, “
Boiling Characteristics of Carbon Nanotube Suspensions Under Sub-Atmospheric Pressures
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1156
1164
.
25.
Faulkner
,
D.
,
Khotan
,
M.
, and
Shekarriz
,
R.
,
2003
, “
Practical Design of a 1000 W/cm
2
Cooling System [High Power Electronics]
,”
Proc. IEEE Semicond. Therm. Meas. Manage. Symp.
,
19
, pp.
223
230
.
26.
Peng
,
H.
,
Ding
,
G.
,
Jiang
,
W.
,
Hu
,
H.
, and
Gao
,
Y.
,
2009
, “
Heat Transfer Characteristics of Refrigerant-Based Nanofluid Flow Boiling Inside a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
32
(
6
), pp.
1259
1270
.
27.
Sun
,
B.
, and
Yang
,
D.
,
2014
, “
Flow Boiling Heat Transfer Characteristics of Nano-Refrigerants in a Horizontal Tube
,”
Int. J. Refrig.
,
38
, pp.
206
214
.
28.
Buschmann
,
M. H.
,
Azizian
,
R.
,
Kempe
,
T.
,
Juliá
,
J. E.
,
Martínez-Cuenca
,
R.
,
Sundén
,
B.
,
Wu
,
Z.
,
Seppälä
,
A.
, and
Ala-Nissila
,
T.
,
2018
, “
Correct Interpretation of Nanofluid Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
129
, pp.
504
531
.
29.
Aksoy
,
Y. T.
,
Castanet
,
G.
,
Eneren
,
P.
,
García-Wong
,
A. C.
,
Czerwiec
,
T.
,
Caballina
,
O.
, and
Vetrano
,
M. R.
,
2023
, “
Experimental Investigation of the Influence of Nanoparticles on Droplet Spreading Dynamics and Heat Transfer During Early Stage Cooling
,”
Exp. Therm. Fluid Sci.
,
149
, p.
111023
.
30.
Ma
,
X.
,
Aldhaleai
,
A.
,
Liu
,
L.
, and
Tsai
,
P. A.
,
2024
, “
Nanofluid Drop Impact on Heated Surfaces
,”
Langmuir
,
40
(
7
), pp.
3640
3650
.
31.
Duursma
,
G.
,
Sefiane
,
K.
,
Dehaene
,
A.
,
Harmand
,
S.
, and
Wang
,
Y.
,
2015
, “
Flow and Heat Transfer of Single-and Two-Phase Boiling of Nanofluids in Microchannels
,”
Heat Transfer Eng.
,
36
(
14–15
), pp.
1252
1265
.
32.
Xu
,
L.
, and
Xu
,
J.
,
2012
, “
Nanofluid Stabilizes and Enhances Convective Boiling Heat Transfer in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5673
5686
.
33.
Vafaei
,
S.
, and
Wen
,
D.
,
2010
, “
Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102404
.
34.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2024
, “
Experimental Study on Flow Boiling Heat Transfer Augmentation of Novel Zinc Oxide Coated Copper Hybrid Nanofluids
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
238
(
10
), p.
4866
.
35.
Gupta
,
S. K.
,
2024
, “
Experimental Subcooled Flow Boiling Instability and Heat Transfer Analysis Through Zinc Oxide Coated Copper Hybrid Nanofluid Boiling on the Structured Microchannels
,”
Chem. Eng. Process. Process Intensif.
,
197
, p.
109691
.
36.
Sarafraz
,
M. M.
, and
Hormozi
,
F.
,
2016
, “
Comparatively Experimental Study on the Boiling Thermal Performance of Metal Oxide and Multi-Walled Carbon Nanotube Nanofluids
,”
Powder Technol.
,
287
, pp.
412
430
.
37.
Wen
,
D.
,
2012
, “
Influence of Nanoparticles on Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
41
, pp.
2
9
.
38.
Singh
,
S. K.
, and
Sharma
,
D.
,
2024
, “
Experimental Investigation on Pool Boiling Heat Transfer Performance of Superhydrophilic, Hydrophilic and Hydrophobic Surface
,”
Int. J. Thermophys.
,
45
(
4
), p.
53
.
39.
Mahbubul
,
I. M.
,
Elcioglu
,
E. B.
,
Saidur
,
R.
, and
Amalina
,
M. A.
,
2017
, “
Optimization of Ultrasonication Period for Better Dispersion and Stability of TiO2–Water Nanofluid
,”
Ultrason. Sonochem.
,
37
, pp.
360
367
.
40.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2018
, “
An Experimental Investigation on Flow Boiling Heat Transfer Enhancement Using Cu-TiO
2
Nanocomposite Coating on Copper Substrate
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
406
419
.
41.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2021
, “
Flow Boiling Heat Transfer Performance of Copper-Alumina Micro-Nanostructured Surfaces Developed by Forced Convection Electrodeposition Technique
,”
Chem. Eng. Process. Process Intensif.
,
164
, p.
108408
.
42.
Hadžić
,
A.
,
Može
,
M.
,
Arhar
,
K.
,
Zupančič
,
M.
, and
Golobič
,
I.
,
2022
, “
Effect of Nanoparticle Size and Concentration on Pool Boiling Heat Transfer With TiO
2
Nanofluids on Laser-Textured Copper Surfaces
,”
Nanomaterials
,
12
(
15
), p.
2611
.
43.
Schultz
,
R.
, and
Cole
,
R.
,
1979
, “
Uncertainty Analysis in Boiling Nucleation
,”
AIChE Symp. Ser.
,
75
, pp.
32
38
.
44.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
,
2002
, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
,
16
(
4
), pp.
547
552
.
45.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2023
, “
Experimental Pool Boiling Heat Transfer Analysis Through Novel ZnO-Coated Cu (Cu@ZnO Nanoparticle) Hybrid Nanofluid Boiling on the Fin Tops of Different Microchannels
,”
J. Therm. Anal. Calorim.
,
148
(
21
), pp.
12247
12267
.
46.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Chan
,
K. C.
,
Fu
,
S. C.
, and
Chao
,
C. Y. H.
,
2019
, “
On Trade-Off for Dispersion Stability and Thermal Transport of Cu-Al
2
O
3
Hybrid Nanofluid for Various Mixing Ratios
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1200
1216
.
47.
Mahbubul
,
I. M.
,
Chong
,
T. H.
,
Khaleduzzaman
,
S. S.
,
Shahrul
,
I. M.
,
Saidur
,
R.
,
Long
,
B. D.
, and
Amalina
,
M. A.
,
2014
, “
Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina–Water Nanofluid
,”
Ind. Eng. Chem. Res.
,
53
(
16
), pp.
6677
6684
.
48.
ASHRAE
,
2009
,
ASHRAE Handbook–Fundamentals
,
ASHRAE
.
49.
Barewar
,
S. D.
,
Chougule
,
S. S.
,
Jadhav
,
J.
, and
Biswas
,
S.
,
2018
, “
Synthesis and Thermo-Physical Properties of Water-Based Novel Ag/ZnO Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
134
(
3
), pp.
1493
1504
.
50.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
51.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer
,
23
(
4
), pp.
317
332
.
52.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
53.
Kenning
,
D. B. R.
, and
Cooper
,
M. G.
,
1989
, “
Saturated Flow Boiling of Water in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
445
458
.
54.
Paul
,
G.
,
Das
,
P. K.
, and
Manna
,
I.
,
2016
, “
Assessment of the Process of Boiling Heat Transfer During Rewetting of a Vertical Tube Bottom Flooded by Alumina Nanofluid
,”
Int. J. Heat Mass Transfer
,
94
, pp.
390
402
.
55.
Peng
,
C.
,
Chen
,
H.
,
Song
,
Y.
,
Deng
,
J.
, and
Wu
,
J.
,
2024
, “
Critical Heat Flux and the Boiling Heat Transfer Mechanism of Nanofluids Based on Interface Instability: Experiment and Engineering Model Study
,”
Int. J. Heat Mass Transfer
,
233
, p.
126023
.
56.
AlMarzooqi
,
F. A.
,
Bilad
,
M. R.
,
Mansoor
,
B.
, and
Arafat
,
H. A.
,
2016
, “
A Comparative Study of Image Analysis and Porometry Techniques for Characterization of Porous Membranes
,”
J. Mater. Sci.
,
51
(
5
), pp.
2017
2032
.
57.
Li
,
J.
,
Lin
,
Y.
,
Zhou
,
K.
, and
Li
,
W.
,
2020
, “
Subcooled Flow Boiling on Micro-Porous Structured Copper Surface in a Vertical Mini-Gap Channel
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
6
), p.
061010
.
58.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
59.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.
60.
Yabuki
,
T.
, and
Nakabeppu
,
O.
,
2014
, “
Heat Transfer Mechanisms in Isolated Bubble Boiling of Water Observed With MEMS Sensor
,”
Int. J. Heat Mass Transfer
,
76
, pp.
286
297
.
61.
Li
,
X.
,
Sun
,
J.
,
Xu
,
C.
,
Li
,
Y.
,
Zhang
,
R.
,
Qian
,
L.
, and
Chen
,
Y.
,
2019
, “
Visualization of Bubble Flow in the Channel of a Dimple-Type Embossing Plate Heat Exchanger Under Different Fluid Inlet/Outlet Ports
,”
Int. J. Heat Mass Transfer
,
145
, p.
118750
.
62.
Kumar
,
R.
,
Sen
,
D.
, and
Mandal
,
S. K.
,
2024
, “
Pool Boiling of CNT+ GO Nanomaterial-Coated Copper Substrate: An Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021011
.
63.
Kumar
,
R.
,
Ranawat
,
N. S.
, and
Mandal
,
S. K.
,
2024
, “
Stacking Ensemble Method to Predict the Pool Boiling Heat Transfer of Nanomaterial-Coated Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
11
), p.
114501
.
You do not currently have access to this content.