Abstract

The absorber is a crucial element in vapor absorption refrigeration systems since it has lower heat and mass transfer coefficients during the absorption process. Among various absorber configurations aimed at improving absorption, bubble absorbers exhibit superior performance. This study explores a novel, passive improvement method employing a cavity-type swirl generator in the refrigerant stream to improve the bubble absorption process by imparting the swirl motion to the refrigerant bubbles. Experiments are performed on a copper bubble absorber within a vapor absorption system, employing an R134a–dimethylformamide working fluid pair. Experimental studies are carried out by changing the operating parameters to analyze the bubble absorber performance characteristics. The effect of the swirl generator is evaluated by comparing the solution-side heat transfer coefficient and volumetric mass transfer coefficient with and without the swirl generator. Results have shown that the swirl generator effectively enhances the bubble absorption process by improving the solution-side heat transfer coefficient by 23–102% and the volumetric mass transfer coefficient by 52–98%.

References

1.
Sadi
,
M.
,
Chakravarty
,
K. H.
,
Behzadi
,
A.
, and
Arabkoohsar
,
A.
,
2021
, “
Techno-Economic-Environmental Investigation of Various Biomass Types and Innovative Biomass-Firing Technologies for Cost-Effective Cooling in India
,”
Energy
,
219
.
2.
Wang
,
X.
,
Bierwirth
,
A.
,
Christ
,
A.
,
Whittaker
,
P.
,
Regenauer-Lieb
,
K.
, and
Chua
,
H. T.
,
2013
, “
Application of Geothermal Absorption Air-Conditioning System: A Case Study
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
71
80
.
3.
Hassan
,
H. Z.
, and
Mohamad
,
A. A.
,
2012
, “
A Review on Solar Cold Production Through Absorption Technology
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5331
5348
.
4.
Bouguetaia
,
N.
,
Bellel
,
N.
, and
Lekbir
,
A.
,
2023
, “
Absorption Chiller System Driven by the Solar Hybrid System: Case Study in the Algeria Weather Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
061009
.
5.
Hsu
,
C. Y.
,
Lin
,
T. Y.
,
Liang
,
J. D.
,
Lai
,
C. H.
, and
Chen
,
S. L.
,
2019
, “
Optimization Analysis of Waste Heat Recovery District Cooling System on a Remote Island: Case Study Green Island
,”
Energy Convers. Manag.
,
183
, pp.
660
670
.
6.
Little
,
A. B.
, and
Garimella
,
S.
,
2012
, “
Waste Heat Recovery in Data Centers Using Sorption Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
2
), pp.
1
9
.
7.
Venkataraman
,
V.
,
El-Kharouf
,
A.
,
Pandya
,
B.
,
Amakiri
,
E.
, and
Steinberger-Wilckens
,
R.
,
2020
, “
Coupling of Engine Exhaust and Fuel Cell Exhaust With Vapour Absorption Refrigeration/Air Conditioning Systems for Transport Applications: A Review
,”
Therm. Sci. Eng. Prog.
,
18
.
8.
Xie
,
G.
,
Sheng
,
G.
,
Bansal
,
P. K.
, and
Li
,
G.
,
2008
, “
Absorber Performance of a Water/Lithium-Bromide Absorption Chiller
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1557
1562
.
9.
Fatouh
,
M.
, and
Murthy
,
S. S. A. S. A.
,
1996
, “
HCFC22-Based Vapour Absorption Refrigeration Systems. Part ii: Influence of Component Effectiveness
,”
Int. J. Energy Res.
,
20
, pp.
371
384
. CCC 0363-907X/96/050371-14
10.
Ibarra-Bahena
,
J.
, and
Romero
,
R. J.
,
2014
, “
Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review
,”
Energies
,
7
(
2
), pp.
751
766
.
11.
Kilic
,
M.
, and
Kaynakli
,
O.
,
2007
, “
Second law-Based Thermodynamic Analysis of Water-Lithium Bromide Absorption Refrigeration System
,”
Energy
,
32
(
8
), pp.
1505
1512
.
12.
Aman
,
J.
,
Ting
,
D. S. K.
, and
Henshaw
,
P.
,
2014
, “
Residential Solar Air Conditioning: Energy and Exergy Analyses of an Ammonia-Water Absorption Cooling System
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
424
432
.
13.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2000
, “
Analytical Investigation of Two Different Absorption Modes: Falling Film and Bubble Types
,”
Int. J. Refrig.
,
23
(
6
), pp.
430
443
.
14.
Lee
,
K. B.
,
Chun
,
B. H.
,
Lee
,
J. C.
,
Hyun
,
J. C.
, and
Kim
,
S. H.
,
2002
, “
Comparison of Heat and Mass Transfer in Falling Film and Bubble Absorbers of Ammonia-Water
,”
Exp. Heat Transfer
,
15
(
3
), pp.
191
205
.
15.
Hoysall
,
D. C.
, and
Garimella
,
S.
,
2018
, “
Investigation of a Serpentine Micro-pin fin Heat and Mass Exchanger for Absorption Systems
,”
Int. J. Refrig.
,
93
, pp.
108
121
.
16.
Fernández-Seara
,
J.
,
Sieres
,
J.
,
Rodríguez
,
C.
, and
Vázquez
,
M.
,
2005
, “
Ammonia-Water Absorption in Vertical Tubular Absorbers
,”
Int. J. Therm. Sci.
,
44
(
3
), pp.
277
288
.
17.
Hafsia
,
N. B.
,
Chaouachi
,
B.
, and
Gabsi
,
S.
,
2015
, “
Surface Tension Effects on the Absorption Process in a Spiral Tubular Absorber Working with LiBr-H2O Couple
,”
Int. J. Therm. Sci.
,
94
, pp.
79
89
.
18.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2013
, “
Characterization of Twisted-Tape-Induced Helical Swirl Flows for Enhancement of Forced Convective Heat Transfer in Single-Phase and Two-Phase Flows
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), pp.
1
12
.
19.
Cerezo
,
J.
,
Best
,
R.
,
Chan
,
J. J.
,
Romero
,
R. J.
,
Hernandez
,
J. I.
, and
Lara
,
F.
,
2018
, “
A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer
,”
Energies
,
11
(
1
), pp.
1
14
.
20.
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
,
2006
, “
Heat Transfer Enhancement in a Tube With Combined Conical-Nozzle Inserts and Swirl Generator
,”
Energy Convers. Manag.
,
47
(
18–19
), pp.
2867
2882
.
21.
Kim
,
J. K.
,
Jung
,
J. Y.
, and
Kang
,
Y. T.
,
2007
, “
Absorption Performance Enhancement by Nano-Particles and Chemical Surfactants in Binary Nanofluids
,”
Int. J. Refrig.
,
30
(
1
), pp.
50
57
.
22.
Wu
,
X.
,
Liu
,
J.
,
Xu
,
S.
, and
Wang
,
W.
,
2019
, “
Effect of Vibration Parameters on the Bubble Absorption Characteristics of Working Fluids R134a–DMAC in a Vertical Tube
,”
Int. J. Refrig.
,
99
, pp.
234
242
.
23.
Wu
,
W. D.
,
Liu
,
G.
,
Chen
,
S. X.
, and
Zhang
,
H.
,
2013
, “
Nanoferrofluid Addition Enhances Ammonia/Water Bubble Absorption in an External Magnetic Field
,”
Energy Build.
,
57
, pp.
268
277
.
24.
Chan
,
J. J.
,
Best
,
R.
,
Cerezo
,
J.
,
Barrera
,
M. A.
, and
Lezama
,
F. R.
,
2018
, “
Experimental Study of a Bubble Mode Absorption With an Inner Vapor Distributor in a Plate Heat Exchanger-Type Absorber With NH3-LiNO3
,”
Energies
,
11
(
8
), p.
2137
.
25.
Cerezo
,
J.
,
Bourouis
,
M.
,
Vallès
,
M.
,
Coronas
,
A.
, and
Best
,
R.
,
2009
, “
Experimental Study of an Ammonia-Water Bubble Absorber Using a Plate Heat Exchanger for Absorption Refrigeration Machines
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1005
1011
.
26.
Suresh
,
M.
, and
Mani
,
A.
,
2013
, “
Heat and Mass Transfer Studies on a Compact Bubble Absorber in R134a-DMF Solution Based Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
36
(
3
), pp.
1004
1014
.
27.
Oronel
,
C.
,
Amaris
,
C.
,
Bourouis
,
M.
, and
Vallès
,
M.
,
2013
, “
Heat and Mass Transfer in a Bubble Plate Absorber With NH3/LiNO3and NH3/(LiNO3+ H2O) Mixtures
,”
Int. J. Therm. Sci.
,
63
, pp.
105
114
.
28.
Jung
,
C. W.
,
An
,
S. S.
, and
Kang
,
Y. T.
,
2014
, “
Thermal Performance Estimation of Ammonia-Water Plate Bubble Absorbers for Compression/Absorption Hybrid Heat Pump Application
,”
Energy
,
75
, pp.
371
378
.
29.
Jiménez-García
,
J. C.
, and
Rivera
,
W.
,
2018
, “
Parametric Analysis on the Performance of an Experimental Ammonia/Lithium Nitrate Absorption Cooling System
,”
Int. J. Energy Res.
,
42
(
14
), pp.
4402
4416
.
30.
Jenks
,
J.
, and
Narayanan
,
V.
,
2008
, “
Effect of Channel Geometry Variations on the Performance of a Constrained Microscale-Film Ammonia-Water Bubble Absorber
,”
ASME J. Heat Transfer
,
130
(
11
), p.
112402
.
31.
Amaris
,
C.
,
Bourouis
,
M.
, and
Vallès
,
M.
,
2014
, “
Effect of Advanced Surfaces on the Ammonia Absorption Process With NH3/LiNO3 in a Tubular Bubble Absorber
,”
Int. J. Heat Mass Transfer
,
72
, pp.
544
552
.
32.
Panda
,
S. K.
, and
Mani
,
A.
,
2018
, “
Performance Evaluation of Bubble Absorber Using R134a/DMF in Vapour Absorption Refrigeration System With Swirl Injector
,”
Proceedings of the 17th International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
,
July 9–12
, Vol.
2328
, pp.
1
10
.
33.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.
34.
Ziegler
,
F.
, and
Grossman
,
G.
,
1996
, “
Heat-Transfer Enhancement by Additives
,”
Int. J. Refrig.
,
19
(
5
), pp.
301
309
.
35.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
1999
, “
Visualization and Model Development of Marangoni Convection in NH3–H2O System
,”
Int. J. Refrig.
,
22
(
8
), pp.
640
649
.
36.
Kini
,
G.
, and
Garimella
,
S.
,
2022
, “
Surfactant-Enhanced Ammonia-Water Bubble Absorption
,”
Int. J. Heat Mass Transfer
,
187
.
37.
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Passive Enhancement of Ammonia-Water Absorption by the Addition of Surfactants
,”
Int. J. Heat Mass Transfer
,
176
(
121478
).
38.
Kim
,
J. K.
,
Jung
,
J. Y.
,
Kim
,
J. H.
,
Kim
,
M. G.
,
Kashiwagi
,
T.
, and
Kang
,
Y. T.
,
2006
, “
The Effect of Chemical Surfactants on the Absorption Performance During NH3/H2O Bubble Absorption Process
,”
Int. J. Refrig.
,
29
(
2
), pp.
170
177
.
39.
Xuehu
,
M.
,
Su
,
F.
,
Chen
,
J.
, and
Zhang
,
Y.
,
2007
, “
Heat and Mass Transfer Enhancement of the Bubble Absorption for a Binary Nanofluid
,”
J. Mech. Sci. Technol.
,
21
(
11
), pp.
1813
1818
.
40.
Pang
,
C.
,
Wu
,
W.
,
Sheng
,
W.
,
Zhang
,
H.
, and
Kang
,
Y. T.
,
2012
, “
Mass Transfer Enhancement by Binary Nanofluids (NH3/H2O + Ag Nanoparticles) for Bubble Absorption Process
,”
Int. J. Refrig.
,
35
(
8
), pp.
2240
2247
.
41.
Lee
,
J. W.
,
Torres Pineda
,
I.
,
Lee
,
J. H.
, and
Kang
,
Y. T.
,
2016
, “
Combined CO2 Absorption/Regeneration Performance Enhancement by Using Nanoabsorbents
,”
Appl. Energy
,
178
, pp.
164
176
.
42.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2006
, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
,
6
(
3
), pp.
419
423
.
43.
Sara
,
O. N.
,
Içer
,
F.
,
Yapici
,
S.
, and
Sahin
,
B.
,
2011
, “
Effect of Suspended CuO Nanoparticles on Mass Transfer to a Rotating Disc Electrode
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
558
564
.
44.
Jin
,
Z.
,
Li
,
S.
,
Zhou
,
R.
,
Xu
,
M.
,
Jiang
,
W.
, and
Du
,
K.
,
2021
, “
Experimental Investigation on the Effect of TiO2 Nanoparticles on the Performance of NH3—H2O—LiBr Absorption Refrigeration System
,”
Int. J. Refrig.
,
131
, pp.
826
833
.
45.
Su
,
F.
,
Ma
,
H.
,
Deng
,
Y.
, and
Zhao
,
N.
,
2014
, “
A Numerical Model for Ammonia/Water Absorption From a Bubble Expanding at a Submerged Nozzle Into a Binary Nanofluid
,”
ASME J. Nanotechnol. Eng. Med.
,
5
(
1
), p.
010902
.
46.
Yang
,
Y.
,
Wu
,
W.
,
Tang
,
H.
, and
Lu
,
J.
,
2020
, “
Experimental Investigations on the Combined Effect of Nanofluid and Ultrasonic Field on Ammonia Bubble Absorption
,”
J. Enhanced Heat Transfer
,
27
(
2
), pp.
159
171
.
47.
Kim
,
J. K.
,
Jung
,
J. Y.
, and
Kang
,
Y. T.
,
2006
, “
The Effect of Nano-Particles on the Bubble Absorption Performance in a Binary Nanofluid
,”
Int. J. Refrig.
,
29
(
1
), pp.
22
29
.
48.
Amaris
,
C.
,
Bourouis
,
M.
, and
Vallès
,
M.
,
2014
, “
Passive Intensification of the Ammonia Absorption Process With NH3/LiNO3 using Carbon Nanotubes and Advanced Surfaces in a Tubular Bubble Absorber
,”
Energy
,
68
, pp.
519
528
.
49.
Ma
,
X.
,
Su
,
F.
,
Chen
,
J.
,
Bai
,
T.
, and
Han
,
Z.
,
2009
, “
Enhancement of Bubble Absorption Process Using a CNTs-Ammonia Binary Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
657
660
.
50.
Sanikommu
,
N. R.
,
Mani
,
A.
, and
Tiwari
,
S.
,
2021
, “
Bubble Dynamics Studies in an Absorber With Swirl Entry of an Absorption Refrigeration System
,”
Proceedings of the 18th International Refrigeration and Air Conditioning Conference
,
Purdue
,
May 24–28
, pp.
1
9
.
51.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, 4th ed.,
McGraw-Hill
,
New York
.
52.
Nezu
,
Y.
,
Hisada
,
N.
,
Ishiyama
,
T.
, and
Watanabe
,
K.
,
2002
, “
Thermodynamic Properties of Working-Fluid Pairs With R-134a for Absorption Refrigeration System
,” IIR/IIF-Commission B1,B2,E1 E2, pp.
446
453
.
53.
Jiang
,
M.
,
Xu
,
S.
, and
Wu
,
X.
,
2017
, “
Experimental Investigation for Heat and Mass Transfer Characteristics of R124-DMAC Bubble Absorption in a Vertical Tubular Absorber
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2198
2210
.
54.
Amaris
,
C.
,
2013
, “
Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LINO3 Absorption Chillers
,”
Ph.D. Thesis
. http://hdl. handle. net/10803/128504
You do not currently have access to this content.