Graphical Abstract Figure

Overview of the entire development of the lab-level test rig

Graphical Abstract Figure

Overview of the entire development of the lab-level test rig

Close modal

Abstract

Rail–wheel contact measurement is crucial for several reasons. First and foremost, it directly affects the safety of passengers, crew, and the general public. Accurate measurements help identify irregularities in wheel–rail contact, such as wheel defects, wear, or track anomalies, which can lead to derailments or accidents if left unaddressed. An inventive technique for measuring the temperatures at rail–wheel contact at various speeds is presented in this research. The novel approach uses a 1:5 scaled-down test rig model of a wheel and rail with a fiber Bragg grating (FBG) sensor to combine the experimental and finite element analysis simulation to determine the rail–wheel contact temperature. By employing the various data acquisition and data analysis techniques, rail–wheel contact temperature at different speeds ranging between 10 kmph and 40 kmph was determined 1538.735–1538.831 nm with a center wavelength of 1538.438 nm. The results illustrate the possibilities of the downsized test rig with experimental observations at varying speeds by examining the benefits of FBG sensors over traditional sensors. The experimental results are used to determine the equivalent wavelength shift. FBG sensor design and simulation are done with the grating modulation depth (MOD) optical tool. For this temperature range and Bragg's wavelength of 1538.438 nm, the sensitivity of fiber Bragg grating is observed to be 13.6 pm/°C.

References

1.
Vakkalagadda
,
M. R. K.
,
Vineesh
,
K. P.
, and
Racherla
,
V.
,
2015
, “
Estimation of Railway Wheel Running Temperatures Using a Hybrid Approach
,”
Wear
,
328–329
, pp.
537
551
.
2.
Alizadeh Otorabad
,
H.
,
Younesian
,
D.
,
Hosseini Tehrani
,
P.
,
Sietsma
,
J.
, and
Petrov
,
R.
,
2019
, “
Modeling Temperature Evolution of Wheel Flat During Formation
,”
Int. J. Therm. Sci.
,
140
, pp.
114
126
.
3.
Ekberg
,
A.
, and
Kabo
,
E.
,
2005
, “
Fatigue of Railway Wheels and Rails Under Rolling Contact and Thermal Loading—An Overview
,”
Wear
,
258
(
7–8
), pp.
1288
1300
.
4.
Yevtushenko
,
A. A.
, and
Grzes
,
P.
,
2016
, “
Mutual Influence of the Sliding Velocity and Temperature in Frictional Heating of the Thermally Nonlinear Disc Brake
,”
Int. J. Therm. Sci.
,
102
, pp.
254
262
.
5.
Belhocine
,
A.
, and
Bouchetara
,
M.
,
2012
, “
Thermomechanical Modelling of Dry Contacts in Automotive Disc Brake
,”
Int. J. Therm. Sci.
,
60
(
3
), pp.
161
170
.
6.
Yevtushenko
,
A. A.
,
Kuciej
,
M.
, and
Yevtushenko
,
O.
,
2011
, “
Three-Element Model of Frictional Heating During Braking With Contact Thermal Resistance and Time-Dependent Pressure
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1116
1124
.
7.
Teimourimanesh
,
S.
,
Lundén
,
R.
, and
Vernersson
,
T.
,
2010
, “
Braking Capacity of Railway Wheels ─ State-of-the-Art Survey
,”
Proceedings of the 16th International Wheelset Congress (IWC16)
,
Cape Town, South Africa
,
Mar. 14–19
, pp.
A1
A18
.
8.
Peng
,
D.
,
Jones
,
R.
, and
Constable
,
T.
,
2013
, “
An Investigation of the Influence of Rail Chill on Crack Growth in a Railway Wheel Due to Braking Loads
,”
Eng. Fract. Mech.
,
98
, pp.
1
14
.
9.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
(
6
), pp.
438
455
.
10.
Cvetkovski
,
K.
, and
Ahlström
,
J.
,
2013
, “
Characterisation of Plastic Deformation and Thermal Softening of the Surface Layer of Railway Passenger Wheel Treads
,”
Wear
,
300
(
1–2
), pp.
200
204
.
11.
Cvetkovski
,
K.
,
Ahlström
,
J.
, and
Karlsson
,
B.
,
2010
, “
Thermal Softening of Fine Pearlitic Steel and Its Effect on the Fatigue Behaviour
,”
Procedia Eng.
,
2
(
1
), pp.
541
545
.
12.
Caprioli
,
S.
,
Vernersson
,
T.
,
Handa
,
K.
, and
Ikeuchi
,
K.
,
2016
, “
Thermal Cracking of Railway Wheels: Towards Experimental Validation
,”
Tribol. Int.
,
94
, pp.
409
420
.
13.
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhou
,
Z.
,
2008
, “
An Analysis of Wear and Spalling Characteristics of the Wheel Steel Under Rolling–Sliding Conditions
,”
Proc. Inst. Mech. Eng., Part J: Eng. Tribol.
,
222
(
2
), pp.
81
86
.
14.
Liu
,
B.
, and
Bruni
,
S.
,
2015
, “
Analysis of Wheel-Roller Contact and Comparison With the Wheel-Rail Case
,”
Urban Rail Transit
,
1
(
4
), pp.
215
226
.
15.
Knothe
,
K.
, and
Liebelt
,
S.
,
1995
, “
Determination of Temperatures for Sliding Contact with Applications for Wheel-Rail Systems
,”
Wear
,
189
(
1–2
), pp.
91
99
.
16.
Gallardo-Hernández
,
E. A.
,
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
Temperature in a Twin-Disc Wheel/Rail Contact Simulation
,”
Tribol. Int.
,
39
(
12
), pp.
1653
1663
.
17.
Sinha
,
A. K.
,
Rajan
,
A.
,
Yogeesh
,
K. J.
,
Ar Babu
,
A. K.
, and
Nilai
,
P.
,
2014
, “
Analysis of Thermal Stresses Contact Problem of Functional Material Involving Frictional Heating with and Without Thermal Effects
,”
Proceedings of The IIER-Science Plus International Conference
,
Kuala Lumpur, Malaysia
,
July 1–2
, pp.
42
46
.
18.
Belhocine
,
A.
,
2014
, “
Structural and Contact Analysis of a 3-Dimensional Disc-Pad Model With and Without Thermal Effects
,”
Turkish J. Eng. Sci. Technol.
,
36
(
4
), pp.
406
418
.
19.
Milosevic
,
M.
,
Stamenković
,
D.
,
Milojević
,
A.
, and
Tomić
,
M.
,
2012
, “
Modeling Thermal Effects in Braking Systems of Railway Vehicles
,”
Thermal Sci.
,
16
(
suppl. 2
), pp.
515
526
.
20.
Miltenović
,
A.
,
Banić
,
M.
,
Stamenković
,
D.
,
Milosevic
,
M.
, and
Tomić
,
M.
,
2015
, “
Determination of Friction Heat Generation in Wheel-Rail Contact Using FEM
,”
Series: Mech. Eng.
,
13
(
2
), pp.
99
108
.
21.
Kumar
,
V.
,
Rastogi
,
V.
, and
Pathak
,
P. M.
,
2018
, “
Effect of Non-Linearity on Wheel/Rail Interaction Dynamics Using Bond Graph
,”
Proceedings of the First International Conference on New Frontiers in Engineering, Science & Technology
,
New Delhi, India
,
Jan. 8–12
, pp.
744
751
.
22.
Naeimi
,
M.
,
Li
,
Z.
,
Petrov
,
R. H.
,
Sietsma
,
J.
, and
Dollevoet
,
R.
,
2018
, “
Development of a New Downscale Setup for Wheel-Rail Contact Experiments Under Impact Loading Conditions
,”
Exp. Techn.
,
42
(
1
), pp.
1
17
.
23.
Shrestha
,
S.
,
Spiryagin
,
M.
, and
Wu
,
Q.
,
2021
, “
Experimental Prototyping of the Adhesion Braking Control System Design Concept for a Mechatronic Bogie
,”
Railway Eng. Sci.
,
29
(
1
), pp.
15
29
.
24.
Kerrouche
,
A.
,
Najeh
,
T.
, and
Jaen-Sola
,
P.
,
2021
, “
Experimental Strain Measurement Approach Using Fiber Bragg Grating Sensors for Monitoring of Railway Switches and Crossings
,”
Sensors
,
21
(
11
), p.
3639
.
25.
Jaschinski
,
A.
,
Chollet
,
H.
,
Iwnicki
,
S.
,
Wickens
,
A.
, and
Wurzen
,
A.
,
1999
, “
The Application of Roller Rigs to Railway Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
31
(
5–6
), pp.
345
392
.
26.
Meymand
,
S. Z.
,
Craft
,
M. J.
, and
Ahmadian
,
M.
,
2013
, “
On the Application of Roller Rigs for Studying Rail Vehicle Systems
,”
Proceedings of ASME Rail. Transp. Des. Forum
,
Altoona, PA
,
Oct. 15–17
, Paper No. RTDF2013-4724,
27.
Zhang
,
W.
,
Dai
,
H.
,
Shen
,
Z.
, and
Zeng
,
J.
,
2006
, “Roller Rigs,”
Handbook of Railway Vehicle Dynamics
,
S.
Iwnicki
, ed.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
458
504
.
28.
Najafi Moghaddam Gilani
,
V.
,
Habibzadeh
,
M.
,
Hosseinian
,
S. M.
, and
Salehfard
,
R.
,
2022
, “
A Review of Railway Track Laboratory Tests With Various Scales for Better Decision-Making About More Efficient Apparatus Using TOPSIS Analysis
,”
Adv. Civ. Eng.
,
2022
(
1
), p.
e9374808
.
29.
Wu
,
Y.
,
Wei
,
Y.
,
Liu
,
Y.
,
Duan
,
Z.
, and
Wang
,
L.
,
2017
, “
3-D Analysis of Thermal-Mechanical Behavior of Wheel/Rail Sliding Contact Considering Temperature Characteristics of Materials
,”
Appl. Therm. Eng.
,
115
, pp.
455
462
.
30.
Roveri
,
N.
,
Carcaterra
,
A.
, and
Sestieri
,
A.
,
2015
, “
Real-Time Monitoring of Railway Infrastructures Using Fibre Bragg Grating Sensors
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
14
28
.
31.
Guo
,
X.
,
Liu
,
J.
, and
Cui
,
R.
,
2024
, “
Research on Train-Induced Vibration of High-Speed Railway Station With Different Structural Forms
,”
Materials (Basel).
,
17
(
17
), p.
4387
.
32.
De Miguel
,
A.
,
Lau
,
A.
, and
Santos
,
I.
,
2018
, “
Numerical Simulation of Track Settlements Based on an Iterative Holistic Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
8
), pp.
1
12
.
33.
Ma
,
S. J.
,
Zhang
,
W. H.
,
Chen
,
G. X.
, and
Zeng
,
J.
,
1994
, “
Full Scale Roller Rig Simulation for Railway Vehicles
,”
Veh. Syst. Dyn.
,
23
(
sup1
), pp.
346
357
.
34.
Matsumoto
,
A.
,
Sato
,
Y.
,
Ohno
,
H.
,
Tomeoka
,
M.
,
Matsumoto
,
K.
,
Kurihara
,
J.
,
Ogino
,
T.
, et al
,
2008
, “
A New Measuring Method of Wheel-Rail Contact Forces and Related Considerations
,”
Wear
,
265
(
9–10
), pp.
1518
1525
.
35.
Burstow
,
M.
,
2003
, “
A Model to Predict and Understand Rolling Contact Fatigue in Wheels and Rails
,”
Eng., Mater. Sci.
https://www.researchgate.net/publication/268420989
36.
Monk-Steel
,
A. D.
,
Thompson
,
D. J.
,
de Beer
,
F. G.
, and
Janssens
,
M. H. A.
,
2006
, “
An Investigation Into the Influence of Longitudinal Creepage on Railway Squeal Noise due to Lateral Creepage
,”
J. Sound Vib.
,
293
(
3–5
), pp.
766
776
.
37.
Hsu
,
S. S.
,
Huang
,
Z.
,
Iwnicki
,
S.
,
Thompson
,
D. J.
,
Jones
,
C. J. C.
,
Xie
,
G.
, and
Allen
,
P.
,
2007
, “
Experimental and Theoretical Investigation of Railway Wheel Squeal
,”
Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit
,
221
(
1
), pp.
59
73
.
38.
Docquier
,
N.
, and
Fisette
,
P.
,
2011
, “
A Scaled-Bogie Test Bench to Understand and Demystify Wheel-Rail Contact Dynamics
,”
Eng., Phys.
, pp.
4
7
.
39.
Heliot
,
C.
,
1986
, “
Small-Scale Test Method for Railway Dynamics
,”
Veh. Syst. Dyn.
,
15
(
sup1
), pp.
197
207
.
40.
Papaelias
,
M.
,
Roberts
,
C.
,
Davis
,
C. L.
,
Lugg
,
M.
, and
Smith
,
M. I.
,
2008
, “
Detection and Quantification of Rail Contact Fatigue Cracks in Rails Using ACFM Technology
,”
Insight
,
50
(
7
), pp.
364
368
.
41.
Yuan
,
Z.
,
Chun
,
T.
,
Mengling
,
W.
,
Jiajun
,
Z.
, and
Chao
,
C.
,
2021
, “
Modeling and Model Validation of Thermal Behavior of Railway Disc During Single Braking
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051017
.
42.
Sastry
,
G. R.
,
Gugulothu
,
S. K.
,
Bharath Raju
,
L. B.
,
Panda
,
J. K.
,
Bhurat
,
S. S.
, and
Burra
,
B.
,
2022
, “
Influence of Exhaust Gas Recirculation on Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/Higher Alcohol Blends
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101001
.
43.
Jagadeep
,
B.
,
Kumar
,
P. K.
, and
Subbaiah
,
K. V.
,
2018
, “
Stress Analysis on Rail Wheel Contact
,”
Int. J. Res. Eng., Sci. Manage.
,
1
(
5
), pp.
47
52
.
44.
Aalami
,
M. R.
,
Anari
,
A.
,
Shafighfard
,
T.
, and
Talatahari
,
S.
,
2013
, “
A Robust Finite Element Analysis of the Rail-Wheel Rolling Contact
,”
Adv. Mech. Eng.
,
5
(
1
), p.
272350
.
45.
Lai
,
C.-L.
,
Kam
,
J. C. P.
,
Lee
,
T. T.
,
Tam
,
A. Y.-M.
,
Ho
,
S. L.
,
Tam
,
H. Y.
, and
Liu
,
M. C.
,
2012
, “
Development of a Fiber-Optic Sensing System for Train Vibration and Train Weight Measurements in Hong Kong
,”
J. Sens.
,
2012
, p.
365165
.
46.
Milojevic
,
A.
,
Tomic
,
M.
, and
Pavlović
,
N.
,
2012
, “
Application of FBG Sensors in Smart Railway
,”
Proceedings of the XV International Scientific-Expert Conference on Railways
,
Niš, Serbia
,
Oct. 4–5
, pp.
149
152
.
47.
Roveri
,
N.
,
Carcaterra
,
A.
, and
Sestieri
,
A.
,
2014
, “
Remote Condition Monitoring of Railway Track Using FBG Sensors
,”
Railway Dynamics and Ground Vibrations: Proceedings of ISMA2014 Including USD2014
,
Leuven, Belgium
,
Sept. 22–24
, pp.
3527
3542
.
48.
Deepa
,
N.
,
Sharan
,
P.
, and
Sharma
,
S.
,
2023
, “
Computer-Aided Analysis of Tapered Roller Bearings for Rail Transport System
,”
Int. J. Inf. Technol.
,
16
(
2
), pp.
831
839
.
49.
Jiang
,
H.
,
Niu
,
F.
,
Jiang
,
W.
,
Cheng
,
L.
,
Li
,
Y.
, and
He
,
J.
,
2022
, “
Numerical Studies for the Thermal Regime of a High-Speed Railway Tunnel Considering Piston Action on Seasonally Frozen Regions
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091012
.
50.
Tarawneh
,
C. M.
,
Fuentes
,
A. A.
,
Kypuros
,
J. A.
,
Navarro
,
L. A.
,
Vaipan
,
A. G.
, and
Wilson
,
B. M.
,
2012
, “
Thermal Modeling of a Railroad Tapered-Roller Bearing Using Finite Element Analysis
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
3
), p.
031002
.
51.
Nagaraju
,
D.
,
Sharan
,
P.
,
Sharma
,
S.
, and
Chakraborty
,
S.
,
2023
, “
Real-Time Implementation of Optical Sensor on Lab Rig Model for Speed Estimation
,”
J. Opt.
,
53
(
3
), pp.
2460
2468
.
52.
N.
,
D.
,
Sharma
,
S.
, and
Sharan
,
P.
,
2023
, “
Mathematics-Based Monitoring of Railways Using Fibre Bragg Grating Temperature Sensors
,”
Proceedings of the 2023 Fourth International Conference on Communication, Computing and Industry 6.0 (C216)
,
Bangalore, India
,
Dec. 15–16
, pp.
1
6
.
You do not currently have access to this content.