Abstract

The effects of vortex generator distance from film cooling holes on increasing gas turbine blade film cooling efficiency have been studied experimentally. The technique of infrared (IR) thermography has been implemented to study the temperature field. The diameter of the film cooling hole and the crossflow velocity define the Reynolds number, which is fixed at 2369. There are now three different jets for crossflow blowing ratio adjustments: 0.5, 1.0, and 1.5. Three different vortex generator distances from the film cooling hole have been studied experimentally to increase the gas turbine blade film cooling efficiency. It has been shown that the lowest distance between vortex generator distance and film cooling hole yields better film cooling efficiency. Overall, the delta winglet pair with the lowest distance between vortex generator distance and film cooling hole outperforms the higher distance because of the generation of secondary longitudinal vortices that completely destroy counter-rotating vortex structures because their rotational tendency is opposite to that of the counter-rotating vortex pair (CRVP).

References

1.
Womack
,
K. M.
,
Schultz
,
M. P.
, and
Volino
,
R. J.
,
2008
, “
Measurements in Film Cooling Flows With Periodic Wakes
,”
ASME J. Turbomach.
,
130
(
4
), p.
041008
.
2.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
3.
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Gas Turbines Power
,
100
(
2
), pp.
303
307
.
4.
Sasaki
,
K.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
J.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirows of Holes
,”
ASME J. Eng. Gas Turbines Power
,
101
(
1
), pp.
101
108
.
5.
Jubran
,
B.
, and
Brown
,
A.
,
1985
, “
Film Cooling From Two Rows of Holes Inclined in the Stream-Wise and Span-Wise Directions
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
84
91
.
6.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
7.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
8.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Teaxs A&M 1980-2004
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.
9.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
10.
Jung
,
I. S.
, and
Lee
,
J. S.
,
2000
, “
Effects of Orientation Angles on Film Cooling Over a Flat Plate Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
(
1
), pp.
153
160
.
11.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
13.
Bell
,
C. M.
,
Bell
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
14.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
15.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
16.
Kelso
,
R. M.
,
Lim
,
T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
17.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure, and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
18.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
19.
Peterson
,
S.
, and
Plesniak
,
M.
,
2004
, “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.
20.
Mehendale
,
A.
, and
Han
,
J.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
21.
Mick
,
W.
, and
Mayle
,
R.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
22.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
23.
Na
,
S.
, and
Shih
,
T. I.-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
24.
Sakai
,
E.
,
Takahashi
,
T.
, and
Agata
,
Y.
,
2013
, “
Experimental Study on Effects of Internal Ribs and Rear Bumps on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
135
(
3
), p.
031025
.
25.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine FilmCooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
26.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,” ASME Paper No. GT-2008-51361.
27.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2012
, “
Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator
,”
ASME J. Turbomach.
,
135
(
1
), p.
0110041
.
28.
Funazaki
,
K.
,
Nakata
,
R.
,
Kawabata
,
H.
,
Tagawa
,
H.
, and
Horiuchi
,
Y.
,
2014
, “
Improvement of Flat-Plate Film Cooling Performance by Double Flow Control Devices–Part I: Investigations on Capability of a Base-Type Device
,” ASME Paper No. GT 2014-25751.
29.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2020
, “
Enhancement in Film Cooling Effectiveness Using Delta Winglet Pair
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051026
.
30.
Halder
,
N.
, and
Panigrahi
,
P. K.
,
2021
, “
Cooling Performance of Vortex Generator
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
235
(
7
), pp.
1619
1638
.
31.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2017
, “
Influence of Delta Wing Vortex Generator on Counter Rotating Vortex Pair in Film Cooling Application of Gas Turbine Blade
,”
Proceedings of the 5th International and 41st National Conference on FMFP 2014
,
Springer, New Delhi
,
Dec. 12–14
, pp.
95
103
.
32.
Halder
,
N.
,
2024
, “
Numerical Inspection of Location, Density Ratio and Turbulent Kinetic Energy of Vortex Generator in Gas Turbine Blade Film Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051002
.
33.
Halder
,
N.
,
2024
, “
Experimental and Numerical Study on Configuration, Shape, Distance and Angle of Attack in Film Cooling Implementing Vortex Generator
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
238
(
6
), pp.
999
1018
.
34.
Halder
,
N.
,
Almeshaal
,
M. A.
,
Haldar
,
B.
, and
Chakravarti
,
A.
,
2023
, “
Influence of Vortex Generator on Gas Turbine Blade Cooling
,”
Int. J. Heat Technol.
,
41
(
3
), pp.
629
638
.
35.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2015
, “
Implementation of Delt Wing Vortex Generator in Film Cooling Application of gas Turbine Blade
,”
Proceedings of the 23rd National Heat and Mass Transfer Conference and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference
,
Thiruvananthapuram, India
,
Dec. 17–20
.
36.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2016
, “
Influence of Vortex Generator on gas Turbine Blade Cooling Effectiveness
,”
6th International and 43rd National Conference on Fluid Mechanics and Fluid Power
,
MNNIT Allahabad, U.P., India
,
Dec. 15–17
.
37.
Halder
,
N.
,
2023
, “
Impact of Vortex Generator on gas Turbine Blade Cooling Application
,”
Proceedings of the International Conference on Mechanical, Automotive and Mechatronics Engineering (ICMAME 2023)
,
Dubai, UAE
,
Apr. 29–30
, pp.
1
7
.
38.
Halder
,
N.
,
Nikhade
,
S. D.
, and
Sulakhe
,
V. N.
,
2024
, “
Effect of Vortex Generator on Gas Turbine Blade Cooling
,”
J. Phys.: Conf. Ser.
,
2763
(
1
), p.
012001
.
39.
Halder
,
N.
,
2021
, “
Implementation of Vortex Generators for Enhancement of Gas Turbine Blade Film Cooling Effectiveness
,”
Ph.D. dissertation
,
Indian Institute of Technology Kanpur
,
Uttar Pradesh, India
.
40.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2011
, “
Numerical Simulation of a Film-Cooling Flow With a Micro-Ramp Vortex Generator
,”
Proceedings of the AIAA
,
Orlando, FL
,
Jan. 4–7
, p.
767
.
41.
Zhao
,
Z.
,
Wen
,
F.
,
Tang
,
X.
,
Luo
,
Y.
,
Hou
,
R.
, and
Wang
,
Z.
,
2021
, “
Large Eddy Simulation of an Inclined Jet in Crossflow With Vortex Generators
,”
Int. J. Heat Mass Transfer
,
170
, p.
121032
.
42.
Kawabata
,
H.
,
Funazaki
,
K. I.
,
Nakata
,
R.
, and
Takahashi
,
D.
,
2013
, “
Experimental and Numerical Investigations of Effects of Flow Control Devices Upon Flat-Plate Film Cooling Performance
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
,
American Society of Mechanical Engineers
, p.
V03BT13A046
, 55157.
43.
Kawabata
,
H.
,
Funazaki
,
K. I.
,
Suzuki
,
Y.
,
Tagawa
,
H.
, and
Horiuchi
,
Y.
,
2016
, “
Improvement of Turbine Vane Film Cooling Performance by Double Flow-Control Devices
,”
ASME J. Turbomach.
,
138
(
11
), p.
111005
.
44.
Chen
,
S. P.
,
Chyu
,
M. K.
, and
Shih
,
T. I. P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1085
1094
.
45.
Abdala
,
A. M.
, and
Elwekeel
,
F. N.
,
2016
, “
An Influence of Novel Upstream Steps on Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
93
, pp.
86
96
.
46.
Zhou
,
W.
, and
Hu
,
H.
,
2016
, “
Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps
,”
Int. J. Heat Mass Transfer
,
103
, pp.
443
456
.
47.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
110
, pp.
908
920
.
48.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing the Uncertainities in Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
49.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Stream Wise Angles in a Cross Flow: Part I Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
221
235
.
50.
Hatem AL-Jabery
,
F. F.
,
2014
, “
Enhancement of Film Cooling Performance by Using Ramped- Holes Injection
,”
Ph.D. thesis
,
University of Technology Machines and Equipment Engineering Department
,
Baghdad, Iraq
.
You do not currently have access to this content.