Abstract

The considerable energy waste in maritime transport and the need to obtain alternatives to reduce emissions of polluting gases are factors that have motivated the study of waste heat recovery systems for marine engines. The system studied herein relies on a binary vapor cycle that uses water for the topping cycle while three organic fluids were investigated for the bottoming cycle: R601a, R134a, and R22. Each of these belongs to a different category of fluid, namely, dry fluid, isentropic fluid, and wet fluid, respectively. Two engines of different ratings and two different pressures of the heat recovery steam generator have been considered for each engine. Various outlet pressures for the topping turbine, which is the most liable to erosion and corrosion due to wet steam, have been investigated. The maximum efficiency achieved for the waste heat recovery system peaked at 21% while the maximum electric power accounted for 4.2% of engine brake power. Therefore, the employment of a waste heat recovery system based on a binary cycle seems a promising alternative to harnessing heat from the exhaust gases of marine engines.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bouman
,
E. A.
,
Lindstad
,
E.
,
Rialland
,
A. I.
, and
Strømman
,
A. H.
,
2017
, “
State-of-the-Art Technologies, Measures, and Potential for Reducing GHG Emissions From Shipping—A Review
,”
Transp. Res. D: Transp. Environ.
,
52
(
A
), pp.
408
421
.
2.
Zhu
,
S.
,
Zhang
,
K.
, and
Deng
,
K.
,
2020
, “
A Review of Waste Heat Recovery From the Marine Engine With Highly Efficient Bottoming Power Cycles
,”
Renew. Sustain. Energy Rev.
,
120
, p.
109611
.
3.
Vargas
,
J.
,
Ordonez
,
J.
, and
Bejan
,
A.
,
2000
, “
Power Extraction From a Hot Stream in the Presence of Phase Change
,”
Int. J. Heat Mass Transfer
,
43
(
2
), pp.
191
201
.
4.
MAN Diesel & Turbo
,
2014
, “
Waste Heat Recovery System (WHRS) for Reduction of Fuel Consumption, Emissions and EEDI
,” p.
32
.
5.
Bahadori
,
A.
,
2011
, “
Estimation of Combustion Flue Gas Acid Dew Point During Heat Recovery and Efficiency Gain
,”
Appl. Therm. Eng.
,
31
(
8
), pp.
1457
1462
.
6.
Shu
,
G.
,
Liang
,
Y.
,
Wei
,
H.
,
Tian
,
H.
,
Zhao
,
J.
, and
Liu
,
L.
,
2013
, “
A Review of Waste Heat Recovery on Two-Stroke IC Engine Aboard Ships
,”
Renew. Sustain. Energy Rev.
,
19
, pp.
385
401
.
7.
Singh
,
D. V.
, and
Pedersen
,
E.
,
2016
, “
A Review of Waste Heat Recovery Technologies for Maritime Applications
,”
Energy Convers. Manage.
,
111
, pp.
315
328
.
8.
Mondejar
,
M. E.
,
Andreasen
,
J. G.
,
Pierobon
,
L.
,
Larsen
,
U.
,
Thern
,
M.
, and
Haglind
,
F.
,
2018
, “
A Review of the Use of Organic Rankine Cycle Power Systems for Maritime Applications
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
126
151
.
9.
Dadpour
,
D.
,
Gholizadeh
,
M.
,
Estiri
,
M.
, and
Poncet
,
S.
,
2023
, “
Multi Objective Optimization and 3E Analyses of a Novel Supercritical/Transcritical CO2 Waste Heat Recovery From a Ship Exhaust
,”
Energy
,
278
, p.
127843
.
10.
Scaccabarozzi
,
R.
,
Tavano
,
M.
,
Invernizzi
,
C. M.
, and
Martelli
,
E.
,
2018
, “
Comparison of Working Fluids and Cycle Optimization for Heat Recovery ORCs From Large Internal Combustion Engines
,”
Energy
,
158
, pp.
396
416
.
11.
Bombarda
,
P.
,
Invernizzi
,
C. M.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycles
,”
Appl. Therm. Eng.
,
30
(
2
), pp.
212
219
.
12.
Shu
,
G.
,
Shi
,
L.
,
Tian
,
H.
,
Deng
,
S.
,
Li
,
X.
, and
Chang
,
L.
,
2017
, “
Configurations Selection Maps of CO2-Based Transcritical Rankine Cycle (CTRC) for Thermal Energy Management of Engine Waste Heat
,”
Appl. Energy
,
186
(
3
), pp.
423
435
.
13.
Shu
,
G.
,
Shi
,
L.
,
Tian
,
H.
,
Li
,
X.
,
Huang
,
G.
, and
Chang
,
L.
,
2016
, “
An Improved CO2-Based Transcritical Rankine Cycle (CTRC) Used for Engine Waste Heat Recovery
,”
Appl. Energy
,
176
, pp.
171
182
.
14.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
3059
3067
.
15.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
John Wiley & Sons
,
Hoboken, NJ
.
16.
Moran
,
M. J.
,
2019
,
Fundamentals of Engineering Thermodynamics, 9th Australia and New Zealand Edition
,
John Wiley & Sons, Incorporated
,
New York
.
17.
Rivera-Alvarez
,
A.
,
Abakporo
,
O. I.
,
Osorio
,
J. D.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2019
, “
Predicting the Slope of the Temperature–Entropy Vapor Saturation Curve for Working Fluid Selection Based on Lee–Kesler Modeling
,”
Ind. Eng. Chem. Res.
,
59
(
2
), pp.
956
969
.
18.
Quoilin
,
S.
,
Declaye
,
S.
,
Tchanche
,
B. F.
, and
Lemort
,
V.
,
2011
, “
Thermo-economic Optimization of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
31
(
14
), pp.
2885
2893
.
19.
Eaton
,
J. W.
,
Bateman
,
D.
,
Hauberg
,
S.
, and
Wehbring
,
R.
,
2020
, “GNU Octave Version 5.2.0 Manual: A High-Level Interactive Language for Numerical Computations,” https://www.gnu.org/software/octave/doc/v5.2.0/
20.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
21.
ANSI/ASHRAE
,
2019
, “
ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 34-2019
,” p.
18
.
22.
Dincer
,
I.
,
2018
, “2.15 Refrigerants: This Contribution Is a Revised and Expanded Version of a Chapter Entitled Refrigerants Published in Refrigeration Systems and Applications (3rd ed., Wiley, 2017) authored by Ibrahim Dincer,”
Comprehensive Energy Systems
,
I.
Dincer
, ed.,
Elsevier
,
Oxford
, pp.
435
474
.
23.
Da Rosa
,
A. V.
, and
Ordóñez
,
J. C.
,
2021
,
Fundamentals of Renewable Energy Processes
,
Academic Press
,
Cambridge
.
You do not currently have access to this content.