Abstract

The prevalence of extensive glazed areas in contemporary buildings contributes significantly to solar radiation infiltration, elevating energy demands and causing discomfort for occupants. Window shading devices play a pivotal role in addressing this challenge. This paper presents the development and optimization of an artificial neural network (ANN) predictive model, designed to enable real-time control of slat angles by predicting total energy loads, specifically during summer (for cooling and lighting purposes). The refined model demonstrates high precision, achieving a normalized root mean square error (nRMSE) of approximately 1.72% and a correlation coefficient (R) of around 0.999, despite utilizing limited meteorological data. Key inputs for the model include solar radiation, solar altitude, and external temperature, with a particular focus on slat reflectivity. The study assesses the efficiency of three slat types based on their reflectivity: high (80%), medium (50%), and low (20%). Additionally, the research explores the impact of window-to-wall ratio (WWR) values on the control system's efficacy, revealing a positive correlation between higher WWR values and improved energy savings through ANN slat angle control. Furthermore, the study extends the applicability of the ANN model to the six thermal zones in Morocco, affirming its generalization across diverse environmental conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gomes
,
M. G.
,
Santos
,
A. J.
, and
Rodrigues
,
A. M.
,
2014
, “
Solar and Visible Optical Properties of Glazing Systems With Venetian Blinds: Numerical, Experimental and Blind Control Study
,”
Build. Environ.
,
71
, pp.
47
59
.
2.
Paik
,
J. Y.
,
Kim
,
J. H.
,
Yeo
,
M. S.
, and
Kim
,
K. W.
,
2006
, “
A Study on the Occupants Use of the Blinds in Office Building
,”
J. Archit. Inst. Korea Plan. Des.
,
22
(
12
), pp.
311
318
.
3.
Kwak
,
Y. H.
,
Kong
,
D. S.
,
Seo
,
D. H.
,
Jang
,
C. Y.
, and
Huh
,
J. H.
,
2011
, “
Effect of Cooling Season Energy Saving Potentials With Blind and Dimming Control Strategies in a Research Building
,”
J. Korean Inst. Archit. Sustain. Environ. Build. Syst.
,
5
(
3
), pp.
168
175
.
4.
Gunay
,
H. B.
,
O’Brien
,
W.
,
Beausoleil-Morrison
,
I.
, and
Gilani
,
S.
,
2017
, “
Development and Implementation of an Adaptive Lighting and Blinds Control Algorithm
,”
Build. Environ.
,
113
, pp.
185
199
.
5.
Kang
,
G.
,
Kang
,
K.
, and
Song
,
D.
,
2015
, “
Optimized Blind Control Method to Minimize Heating, Cooling and Lighting Energy
,”
Energy Procedia
,
78
, pp.
2857
2862
.
6.
Eltaweel
,
A.
, and
Su
,
Y.
,
2017
, “
Controlling Venetian Blinds Based on Parametric Design; Via Implementing Grasshopper’s Plugins: A Case Study of an Office Building in Cairo
,”
Energy Build.
,
139
, pp.
31
43
.
7.
Olbina
,
S.
, and
Hu
,
J.
,
2012
, “
Daylighting and Thermal Performance of Automated Split-Controlled Blinds
,”
Build. Environ.
,
56
, pp.
127
138
.
8.
Kim
,
D.-W.
, and
Park
,
C.-S.
,
2008
, “
Optimal Control Strategies of Blind Systems Using Energy Plus and an Optimization Routine
,”
Korean Institute of Architectural Sustainable Environment and Building Systems (KIAEBS)
,
Seoul, South Korea
, pp.
65
69
.
9.
Chaiwiwatworakul
,
P.
,
Chirarattananon
,
S.
, and
Rakkwamsuk
,
P.
,
2009
, “
Application of Automated Blind for Daylighting in Tropical Region
,”
Energy Convers. Manage.
,
50
(
12
), pp.
2927
2943
.
10.
Zhang
,
S.
, and
Birru
,
D.
,
2012
, “
An Open-Loop Venetian Blind Control to Avoid Direct Sunlight and Enhance Daylight Utilization
,”
Sol. Energy
,
86
(
3
), pp.
860
866
.
11.
Wang
,
Y.
,
Chen
,
Y.
,
Guo
,
X.
,
He
,
W.
, and
Gao
,
L.
,
2015
, “
Development of a Solar Control Method of the Venetian Blinds
,”
Procedia Eng.
,
121
, pp.
1186
1192
.
12.
Ieracitano
,
C.
,
Nicoletti
,
F.
,
Arcuri
,
N.
,
Ruggeri
,
G.
,
Versaci
,
M.
,
Morabito
,
F. C.
, and
Mammone
,
N.
,
2022
, “
A Deep Cognitive Venetian Blinds System for Automatic Estimation of Slat Orientation
,”
Cogn. Comput.
,
14
(
6
), pp.
2203
2211
.
13.
Wen
,
S.
,
Hu
,
X.
,
Hua
,
G.
,
Xue
,
P.
, and
Lai
,
D.
,
2023
, “
Comparing the Performance of Four Shading Strategies Based on a Multi-Objective Genetic Algorithm: A Case Study in a University Library
,”
J. Build. Eng.
,
63
, p.
105532
.
14.
Iwata
,
T.
,
Taniguchi
,
T.
, and
Sakuma
,
R.
,
2017
, “
Automated Blind Control Based on Glare Prevention With Dimmable Light in Open-Plan Offices
,”
Build. Environ.
,
113
, pp.
232
246
.
15.
Oh
,
M. H.
,
Lee
,
K. H.
, and
Yoon
,
J. H.
,
2012
, “
Automated Control Strategies of Inside Slat-Type Blind Considering Visual Comfort and Building Energy Performance
,”
Energy Build.
,
55
, pp.
728
737
.
16.
Kim
,
J.-H.
,
Park
,
Y.-J.
,
Yeo
,
M.-S.
, and
Kim
,
K.-W.
,
2009
, “
An Experimental Study on the Environmental Performance of the Automated Blind in Summer
,”
Build. Environ.
,
44
(
7
), pp.
1517
1527
.
17.
Chan
,
Y.-C.
, and
Tzempelikos
,
A.
,
2013
, “
Efficient Venetian Blind Control Strategies Considering Daylight Utilization and Glare Protection
,”
Sol. Energy
,
98
, pp.
241
254
.
18.
Karlsen
,
L.
,
Heiselberg
,
P.
,
Bryn
,
I.
, and
Johra
,
H.
,
2016
, “
Solar Shading Control Strategy for Office Buildings in Cold Climate
,”
Energy Build.
,
118
, pp.
316
328
.
19.
Yeon
,
S.
,
Yu
,
B.
,
Seo
,
B.
,
Yoon
,
Y.
, and
Lee
,
K. H.
,
2019
, “
ANN Based Automatic Slat Angle Control of Venetian Blind for Minimized Total Load in an Office Building
,”
Sol. Energy
,
180
, pp.
133
145
.
20.
Nicoletti
,
F.
,
Kaliakatsos
,
D.
, and
Parise
,
M.
,
2023
, “
Optimizing the Control of Venetian Blinds With Artificial Neural Networks to Achieve Energy Savings and Visual Comfort
,”
Energy Build.
,
294
, p.
113279
.
21.
Winkelmann
,
F. C.
,
2001
,
Modeling Windows in EnergyPlus
,
AIVC
,
Rio de Janeiro
, p.
11
.
22.
Tzempelikos
,
A.
,
2008
, “
A Review of Optical Properties of Shading Devices
,”
Adv. Build. Energy Res.
,
2
(
1
), pp.
211
239
.
23.
El-Deeb
,
K.
,
2022
, “Energy Performance Assessment of Vertical and Horizontal Venetian Blinds in East and West-Oriented Residential Spaces in Cairo,”
Resilient and Responsible Smart Cities
,
H.
Abdalla
,
H.
Rodrigues
,
V.
Gahlot
,
M.
Salah Uddin
, and
T.
Fukuda
, eds.,
Springer International Publishing
,
Cham
, pp.
303
317
.
24.
Wang
,
Y.
, and
Chen
,
Y.
,
2016
, “
Modeling and Calculation of Solar Gains Through Multi-Glazing Facades With Specular Reflection of Venetian Blind
,”
Sol. Energy
,
130
, pp.
33
45
.
25.
Ranganathan
,
A.
,
2004
, “
The Levenberg–Marquardt Algorithm
,”
Tutoral LM Algorithm
,
11
(
1
), pp.
101
110
.
26.
Bounoua
,
Z.
,
Chahidi
,
L. O.
, and
Mechaqrane
,
A.
,
2021
, “
Estimation of Daily Global Solar Radiation Using Empirical and Machine-Learning Methods: A Case Study of Five Moroccan Locations
,”
Sustain. Mater. Technol.
,
28
, p.
e00261
.
27.
Tzempelikos
,
A.
,
2008
, “
The Impact of Venetian Blind Geometry and Tilt Angle on View, Direct Light Transmission and Interior Illuminance
,”
Sol. Energy
,
82
(
12
), pp.
1172
1191
.
You do not currently have access to this content.