Abstract

It is widely acknowledged that the pressure drop increases with enhanced heat transfer in heat exchanger tubes, and entropy generation analysis serves as an effective method to comprehensively evaluate heat transfer and pressure drops. This paper conducts experimental research on in-tube condensation heat transfer using refrigerants R513A and R134a in six test tubes, comprising both smooth and microfin tubes with outer diameters of 9.52 mm and 12.7 mm, respectively. The microfin tubes are available in two types, with 60 and 65 fins, respectively, and a helix angle of 18 deg. The experimental conditions included mass fluxes of 50–250 kg/m2 s and condensation temperatures of 35 °C, 38 °C, and 40 °C. The findings indicate that replacing R134a with R513A is feasible. The 9.52 mm tube exhibits superior overall heat transfer performance compared to the 12.7 mm tube, and the 60-fin microfin tube outperforms the 65-fin tube in terms of heat transfer efficiency. This suggests that microfin tubes with smaller diameters and an optimal number of fins are more effective in enhancing condensation heat transfer performance.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Velasco
,
F. J. S.
,
Illán-gómez
,
F.
, and
García-cascales
,
J. R.
,
2021
, “
Energy Efficiency Evaluation of the Use of R513A as a Drop-In Replacement for R134a in a Water Chiller With a Minichannel Condenser for Air-Conditioning Applications
,”
Appl. Therm. Eng.
,
182
, p.
115915
.
2.
Morrow
,
J. A.
, and
Derby
,
M. M.
,
2022
, “
Flow Condensation Heat Transfer and Pressure Drop of R134a Alternative Refrigerants R513A and R450A in 0.95-mm Diameter Minichannels
,”
Int. J. Heat Mass Transfer
,
192
, p.
122894
.
3.
Jacob
,
T. A.
,
Matty
,
E. P.
, and
Fronk
,
B. M.
,
2019
, “
Experimental Investigation of in Tube Condensation of Low GWP Refrigerant R450A Using a Fiber Optic Distributed Temperature Sensor
,”
Int. J. Refrig.
,
103
, pp.
274
286
.
4.
Diani
,
A.
,
Brunello
,
P.
, and
Rossetto
,
L.
,
2020
, “
R513A Condensation Heat Transfer Inside Tubes: Microfin Tube vs. Smooth Tube
,”
Int. J. Heat Mass Transfer
,
152
, p.
119472
.
5.
Yang
,
C. Y.
, and
Nalbandian
,
H.
,
2018
, “
Condensation Heat Transfer and Pressure Drop of Refrigerants HFO-1234yf and HFC-134a in Small Circular Tube
,”
Int. J. Heat Mass Transfer
,
127
(
PartB
), pp.
218
227
.
6.
López-belchí
,
A.
,
2019
, “
Assessment of a Mini-channel Condenser at High Ambient Temperatures Based on Experimental Measurements Working With R134a, R513A and R1234yf
,”
Appl. Therm. Eng.
,
155
, pp.
341
353
.
7.
Illán-gómez
,
F.
,
López-belchí
,
A.
,
García-cascales
,
J. R.
, and
Vera-García
,
F.
,
2015
, “
Experimental Two-Phase Heat Transfer Coefficient and Frictional Pressure Drop Inside Mini-channels During Condensation With R1234yf and R134a
,”
Int. J. Refrig.
,
51
, pp.
12
23
.
8.
Makhnatch
,
P.
,
Mota-babiloni
,
A.
,
López-belchí
,
A.
, and
Khodabandeh
,
R.
,
2019
, “
R450A and R513A as Lower GWP Mixtures for High Ambient Temperature Countries: Experimental Comparison With R134a
,”
Energy
,
166
, pp.
223
235
.
9.
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2009
, “
Intensive Literature Review of Condensation Inside Smooth and Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
52
(
15
), pp.
3409
3426
.
10.
Huang
,
L. H.
,
Tang
,
C.
,
Jiang
,
J. D.
,
Tao
,
L. R.
,
Chen
,
J.
,
Li
,
X.
,
Zheng
,
Z.
, and
Tao
,
H.
,
2022
, “
Experimental Research on Refrigerant Condensation Heat Transfer and Pressure Drop Characteristics in the Horizontal Microfin Tubes
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106130
.
11.
Cavallini
,
A.
,
Censi
,
G.
,
Del
,
C. D.
,
Doretti
,
L.
,
Longo
,
G. A.
,
Rossetto
,
L.
, and
Zilio
,
C.
,
2003
, “
Condensation Inside and Outside Smooth and Enhanced Tubes—A Review of Recent Research
,”
Int. J. Refrig.
,
26
(
4
), pp.
373
392
.
12.
Cavallini
,
A.
, and
Zecchin
,
R.
,
1974
, “
A Dimensionless Correlation for Heat Transfer in Forced Convection Condensation
,”
Int. Heat Transfer Conf.
,
5
, pp.
309
313
.
13.
Zhang
,
J.
,
Zhou
,
N.
,
Li
,
W.
,
Luo
,
Y.
, and
Li
,
S.
,
2018
, “
An Experimental Study of R410A Condensation Heat Transfer and Pressure Drops Characteristics in Microfin and Smooth Tubes With 5 mm OD
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1284
1295
.
14.
Li
,
G.
,
Huang
,
L. H.
, and
Tao
,
L. R.
,
2017
, “
Experimental Investigation of Refrigerant Condensation Heat Transfer Characteristics in the Horizontal Microfin Tubes
,”
Appl. Therm. Eng.
,
123
(
1
), pp.
1484
1493
.
15.
Hirose
,
M.
,
Ichinose
,
J.
, and
Inoue
,
N.
,
2018
, “
Development of the General Correlation for Condensation Heat Transfer and Pressure Drop Inside Horizontal 4 mm Small-Diameter Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
90
, pp.
238
248
.
16.
Li
,
W.
,
Wang
,
J.
,
Guo
,
Y.
,
Shi
,
Q.
,
He
,
Y.
,
Kukulka
,
D. J.
,
Luo
,
X.
, and
Kabelac
,
S.
,
2022
, “
R410A Flow Condensation Inside Two Dimensional Micro-fin Tubes and Three Dimensional Dimple Tubes
,”
Int. J. Heat Mass Transfer
,
182
, p.
121910
.
17.
Olivier
,
J. A.
,
Liebenberg
,
L.
,
Kedzierski
,
M. A.
, and
Meyer
,
J. P.
,
2004
, “
Pressure Drop During Refrigerant Condensation Inside Horizontal Smooth, Helical Microfin, and Herringbone Microfin Tubes
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
687
696
.
18.
Palen
,
J. W.
,
Breber
,
G.
, and
Taborek
,
J.
,
1979
, “
Prediction of Flow Regimes in Horizontal Tube Side Condensation
,”
Heat Transfer Eng.
,
1
(
2
), pp.
47
57
.
19.
Mota-babiloni
,
A.
,
Belman-flores
,
J. M.
,
Makhnatch
,
P.
,
Navarro-Esbrí
,
J.
, and
Barroso-Maldonado
,
J. M.
,
2018
, “
Experimental Exergy Analysis of R513A to Replace R134a in a Small Capacity Refrigeration System
,”
Energy
,
162
, pp.
99
110
.
20.
Mota-babiloni
,
A.
,
Navarro-esbrí
,
J.
,
Pascual-miralles
,
V.
,
Barragán-Cervera
,
Á.
, and
Maiorino
,
A.
,
2019
, “
Experimental Influence of an Internal Heat Exchanger (IHX) Using R513A and R134a in a Vapor Compression System
,”
Appl. Therm. Eng.
,
147
, pp.
482
491
.
21.
Revellin
,
R.
,
Lips
,
S.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2009
, “
Local Entropy Generation for Saturated Two-Phase Flow
,”
Energy
,
34
(
9
), pp.
1113
1121
.
22.
Abbas
,
Z.
,
Rafiq
,
M. Y.
,
Alshomrani
,
A. S.
, and
Ullah
,
M. Z.
,
2021
, “
Analysis of Entropy Generation on Peristaltic Phenomena of MHD Slip Flow of Viscous Fluid in a Diverging Tube
,”
Case Stud. Therm. Eng.
,
23
, p.
100817
.
23.
Amit
,
K.
,
Datta
,
A.
,
Biswas
,
N.
,
Das
,
S.
, and
Das
,
P.
,
2021
, “
Designing of Microsink to Maximize the Thermal Performance and Minimize the Entropy Generation With the Role of Flow Structures
,”
Int. J. Heat Mass Transfer
,
176
, p.
121421
.
24.
Khairul
,
M. A.
,
Saidur
,
R.
,
Rahman
,
M. M.
,
Alim
,
M. A.
,
Hossain
,
A.
, and
Abdin
,
Z.
,
2013
, “
Heat Transfer and Thermodynamic Analyses of a Helically Coiled Heat Exchanger Using Different Types of Nanofluids
,”
Int. J. Heat Mass Transfer
,
67
, pp.
398
403
.
25.
Shi
,
X.
,
Wang
,
Y.
,
Huai
,
X.
, and
Cheng
,
K.
,
2020
, “
Influence of Structure Parameters on Entropy Generation Performance in Cross Wavy Channels With Fluid-Solid Coupled Heat Transfer
,”
Appl. Therm. Eng.
,
181
, p.
115882
.
26.
Bejan
,
A.
,
2001
, “
Thermodynamic Optimization of Geometry in Engineering Flow Systems
,”
Exergy
,
1
(
4
), pp.
269
277
.
27.
Sahiti
,
N.
,
Krasniqi
,
F.
,
Fejzullahu
,
X.
,
Bunjaku
,
J.
, and
Muriqi
,
A.
,
2008
, “
Entropy Generation Minimization of a Double-Pipe Pin Fin Heat Exchanger
,”
Appl. Therm. Eng.
,
28
(
17
), pp.
2337
2344
.
28.
Dağtekin
,
İ.
,
Öztop
,
H. F.
, and
Şahin
,
A. Z.
,
2005
, “
An Analysis of Entropy Generation Through a Circular Duct With Different Shaped Longitudinal Fins for Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
171
181
.
29.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
30.
Natalini
,
G.
, and
Sciubba
,
E.
,
1999
, “
Minimization of the Local Rates of Entropy Production in the Design of Air-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
466
475
.
31.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
Wiley&Sons
,
New York
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
33.
Ma
,
L.
,
Liu
,
X.
,
Gao
,
Y.
,
Li
,
W.
,
Wu
,
Z.
,
Luo
,
X.
,
Tao
,
Z.
, and
Kabelac
,
S.
,
2023
, “
R410A and R32 Condensation Heat Transfer and Flow Patterns Inside Horizontal Microfin and 3D Enhanced Tubes
,”
Int. Commun. Heat Mass Transfer
,
142
(
Suppl C
), p.
106638
.
You do not currently have access to this content.