Abstract

Lithium-ion batteries (LiBs) are widely used in electric vehicles due to their high energy and power density. The operating temperature has a significant impact on the thermal performance and longevity of LiBs. The thermal performance of an air-cooled battery module containing 16 (4S4P) high-energy density LiBs has been investigated through a series of experiments and numerical simulations. At varying transverse and longitudinal cell spacing, airflow rates, ambient temperatures, and discharge C-rates, the thermal performance of a battery module with aligned battery cells was analyzed. For the thermal performance evaluation, the average temperature rise, temperature non-uniformity, and maximum temperature of the module’s battery cells are utilized. During discharge cycles, the rate of temperature increase is linear but becomes nonlinear at the end of the discharge cycle. In the current architecture of the battery module, a minimum space utilization ratio of 0.38 is necessary to limit maximum temperature and temperature non-uniformity to safe battery thermal management temperatures. The thermal performance was significantly affected by the airflow rate. Increasing airflow rate decreases temperature but increases pressure drop substantially. The maximum cell temperature is greatly affected by the inlet air temperature, increasing from 62.8 °C to 76.6 °C when the inlet air temperature is increased from 30 °C to 45 °C. At high ambient temperatures (over 40 °C), LiB temperatures exceed permissible limits, and air cooling alone is inadequate. This study examines the thermal performance of an air-cooled battery module working at high temperatures.

References

1.
Dhar
,
S.
,
Pathak
,
M.
, and
Shukla
,
P. R.
,
2017
, “
Electric Vehicles and India’s Low Carbon Passenger Transport: A Long-Term Co-Benefits Assessment
,”
J. Clean. Prod.
,
146
, pp.
139
148
.
2.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
.
3.
Ryu
,
H.-H.
,
Sun
,
H. H.
,
Myung
,
S.-T.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2021
, “
Reducing Cobalt From Lithium-Ion Batteries for the Electric Vehicle Era
,”
Energy Environ. Sci.
,
14
(
2
), pp.
844
852
.
4.
Li
,
W.
,
Pang
,
Y.
,
Zhu
,
T.
,
Wang
,
Y.
, and
Xia
,
Y.
,
2018
, “
A Gel Polymer Electrolyte Based Lithium-Sulfur Battery With Low Self-Discharge
,”
Solid State Ionics
,
318
, pp.
82
87
.
5.
Gabrisch
,
H.
,
Ozawa
,
Y.
, and
Yazami
,
R.
,
2006
, “
Crystal Structure Studies of Thermally Aged Licoo2 and Limn2o4 Cathodes
,”
Electrochim. Acta
,
52
(
4
), pp.
1499
1506
.
6.
Leng
,
F.
,
Tan
,
C. M.
, and
Pecht
,
M.
,
2015
, “
Effect of Temperature on the Aging Rate of Li Ion Battery Operating Above Room Temperature
,”
Sci. Rep.
,
5
(
1
), pp.
1
12
.
7.
Xiao
,
M.
, and
Choe
,
S.-Y.
,
2013
, “
Theoretical and Experimental Analysis of Heat Generations of a Pouch Type Limn2o4/Carbon High Power Li-Polymer Battery
,”
J. Power Sources
,
241
, pp.
46
55
.
8.
Balasundaram
,
M.
,
Ramar
,
V.
,
Yap
,
C.
,
Li
,
L.
,
Tay
,
A. A.
, and
Balaya
,
P.
,
2016
, “
Heat Loss Distribution: Impedance and Thermal Loss Analyses in Lifepo4/Graphite 18650 Electrochemical Cell
,”
J. Power Sources
,
328
, pp.
413
421
.
9.
Lai
,
Y.
,
Du
,
S.
,
Ai
,
L.
,
Ai
,
L.
,
Cheng
,
Y.
,
Tang
,
Y.
, and
Jia
,
M.
,
2015
, “
Insight Into Heat Generation of Lithium Ion Batteries Based on the Electrochemical-Thermal Model at High Discharge Rates
,”
Int. J. Hydrogen Energy
,
40
(
38
), pp.
13039
13049
.
10.
Mashayekhi
,
M.
,
Houshfar
,
E.
, and
Ashjaee
,
M.
,
2020
, “
Development of Hybrid Cooling Method With PCM and Al2o3 Nanofluid in Aluminium Minichannels Using Heat Source Model of Li-Ion Batteries
,”
Appl. Therm. Eng.
,
178
, p.
115543
.
11.
Pesaran
,
A.
,
Santhanagopalan
,
S.
, and
Kim
,
G. H.
,
2013
, “Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)”.
12.
Sharma
,
D. K.
, and
Prabhakar
,
A.
,
2021
, “
A Review on Air Cooled and Air Centric Hybrid Thermal Management Techniques for Li-Ion Battery Packs in Electric Vehicles
,”
J. Energy Storage
,
41
, p.
102885
.
13.
Wang
,
Y.
,
Gao
,
Q.
,
Wang
,
G.
,
Lu
,
P.
,
Zhao
,
M.
, and
Bao
,
W.
,
2018
, “
A Review on Research Status and Key Technologies of Battery Thermal Management and Its Enhanced Safety
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4008
4033
.
14.
Wang
,
T.
,
Tseng
,
K.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
.
15.
Jiaqiang
,
E.
,
Yue
,
M.
,
Chen
,
J.
,
Zhu
,
H.
,
Deng
,
Y.
,
Zhu
,
Y.
,
Zhang
,
F.
,
Wen
,
M.
,
Zhang
,
B.
, and
Kang
,
S.
,
2018
, “
Effects of the Different Air Cooling Strategies on Cooling Performance of a Lithium-Ion Battery Module With Baffle
,”
Appl. Therm. Eng.
,
144
, pp.
231
241
.
16.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
351
363
.
17.
Lu
,
Z.
,
Yu
,
X.
,
Wei
,
L.
,
Qiu
,
Y.
,
Zhang
,
L.
,
Meng
,
X.
, and
Jin
,
L.
,
2018
, “
Parametric Study of Forced Air Cooling Strategy for Lithium-Ion Battery Pack With Staggered Arrangement
,”
Appl. Therm. Eng.
,
136
, pp.
28
40
.
18.
Fan
,
Y.
,
Bao
,
Y.
,
Ling
,
C.
,
Chu
,
Y.
,
Tan
,
X.
, and
Yang
,
S.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.
19.
Yu
,
X.
,
Lu
,
Z.
,
Zhang
,
L.
,
Wei
,
L.
,
Cui
,
X.
, and
Jin
,
L.
,
2019
, “
Experimental Study on Transient Thermal Characteristics of Stagger-Arranged Lithium-Ion Battery Pack With Air Cooling Strategy
,”
Int. J. Heat Mass Transfer
,
143
, p.
118576
.
20.
Peng
,
X.
,
Cui
,
X.
,
Liao
,
X.
, and
Garg
,
A.
,
2020
, “
A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack
,”
Energies
,
13
(
11
), p.
2956
.
21.
Xie
,
Y.
,
Zheng
,
J.
,
Li
,
W.
,
Lee
,
K.
,
Zhang
,
Y.
,
Liu
,
J.
,
Dan
,
D.
,
Wu
,
C.
, and
Wang
,
P.
,
2020
, “
An Improved Electrothermal-Coupled Model for the Temperature Estimation of an Air-Cooled Battery Pack
,”
Int. J. Energy Res.
,
44
(
3
), pp.
2037
2060
.
22.
Saechan
,
P.
, and
Dhuchakallaya
,
I.
,
2022
, “
Numerical Study on the Air-Cooled Thermal Management of Lithium-Ion Battery Pack for Electrical Vehicles
,”
Energy Rep.
,
8
(
1
), pp.
1264
1270
.
23.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
24.
Wang
,
Y.-W.
,
Jiang
,
J.-M.
,
Chung
,
Y.-H.
,
Chen
,
W.-C.
, and
Shu
,
C.-M.
,
2019
, “
Forced-Air Cooling System for Large-Scale Lithium-Ion Battery Modules During Charge and Discharge Processes
,”
J. Therm. Anal. Calorim.
,
135
(
5
), pp.
2891
2901
.
25.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) Vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
.
26.
BIS
,
2022
, “Bureau of Indian Standards is 17855:2022 Electrically Propelled Road Vehicles-Test Specification for Lithium-Ion Traction Battery Packs and Systems-Performance Testing.
27.
Liu
,
Y.-H.
,
Hsieh
,
C.-H.
, and
Luo
,
Y.-F.
,
2011
, “
Search for an Optimal Five-Step Charging Pattern for Li-Ion Batteries Using Consecutive Orthogonal Arrays
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp.
654
661
.
28.
Iraola
,
U.
,
Aizpuru
,
I.
,
Gorrotxategi
,
L.
,
Segade
,
J.M.C.
,
Larrazabal
,
A.E.
, and
Gil
,
I.
,
2015
, “
Influence of Voltage Balancing on the Temperature Distribution of a Li-Ion Battery Module
,”
IEEE Trans. Energy Convers.
,
30
(
2
), pp.
507
514
.
29.
Li
,
X.
,
Abidi
,
A.
,
Zhao
,
X.
,
Gao
,
X.
,
Sajadi
,
S. M.
, and
Sharifpur
,
M.
,
2022
, “
Investigation of Mixed Convection of Non-Newtonian Fluid in the Cooling Process of Lithium-Ion Battery With Different Outlet Position
,”
J. Energy Storage
,
46
, p.
103621
.
30.
Ibrahim
,
M.
,
Saeed
,
T.
,
El-Shorbagy
,
M.
,
Nofal
,
T. A.
, and
Aamir
,
N.
,
2022
, “
Study of Pressure Drop and Heat Transfer in Cooling of Lithium-Ion Battery With Rhombic Arrangement With Two Different Outlets and Different Inlet Dimensions
,”
J. Energy Storage
,
50
, p.
104255
.
31.
Wan
,
C.
,
2021
, “
Tssr Algorithm Based Battery Space Optimization on Thermal Management System
,”
Int. J. Green Energy
,
18
(
12
), pp.
1203
1218
.
32.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
Vol. 2
,
DCW Industries
,
La Canada, CA
.
33.
Chen
,
S.
,
Wei
,
X.
,
Garg
,
A.
, and
Gao
,
L.
,
2021
, “
A Comprehensive Flowrate Optimization Design for a Novel Air–Liquid Cooling Coupled Battery Thermal Management System
,”
ASME J. Electrochem. Energy Convers. Storage.
,
18
(
2
), p.
021008
.
34.
Koorata
,
P. K.
, and
Chandrasekaran
,
N.
,
2021
, “
Numerical Investigation of Cooling Performance of a Novel Air-Cooled Thermal Management System for Cylindrical Li-Ion Battery Module
,”
Appl. Therm. Eng.
,
193
, p.
116961
.
35.
Coman
,
P. T.
,
Darcy
,
E. C.
,
Strangways
,
B.
, and
White
,
R. E.
,
2021
, “
A Reduced-Order Lumped Model for Li-Ion Battery Packs During Operation
,”
J. Electrochem. Soc.
,
168
(
10
), p.
100525
.
36.
Özdemir
,
T.
,
Amini
,
A.
,
Ekici
,
Ö.
, and
Köksal
,
M.
,
2021
, “
Experimental Assessment of the Lumped Lithium Ion Battery Model at Different Operating Conditions
,”
Heat Transfer Eng.
,
43
(
3-5
), pp.
1
16
.
37.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), p.
5
.
38.
Ekström
,
H.
,
Fridholm
,
B.
, and
Lindbergh
,
G.
,
2018
, “
Comparison of Lumped Diffusion Models for Voltage Prediction of a Lithium-Ion Battery Cell During Dynamic Loads
,”
J. Power Sources
,
402
, pp.
296
300
.
39.
Chitta
,
S. D.
,
Akkaldevi
,
C.
,
Jaidi
,
J.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2021
, “
Comparison of Lumped and 1D Electrochemical Models for Prismatic 20Ah Lifepo4 Battery Sandwiched Between Minichannel Cold-Plates
,”
Appl. Therm. Eng.
,
199
, p.
117586
.
40.
Jilte
,
R.
, and
Kumar
,
R.
,
2018
, “
Numerical Investigation on Cooling Performance of Li-Ion Battery Thermal Management System at High Galvanostatic Discharge
,”
Eng. Sci. Technol. Int. J.
,
21
(
5
), pp.
957
969
.
41.
Han
,
U.
,
Choi
,
H.
,
Lee
,
H.
, and
Lee
,
H.
,
2023
, “
Inverse Heat Transfer Analysis Method to Determine the Entropic Coefficient of Reversible Heat in Lithium-Ion Battery
,”
Int. J. Energy Res.
,
2023
, pp.
1
18
.
42.
Cui
,
X.
,
2023
, “
Online Temperature Distribution Estimation of Lithium-Ion Battery Considering Non-Uniform Heat Generation Characteristics Under Boundary Cooling
,”
Appl. Therm. Eng.
, p.
120206
.
43.
Gunnarshaug
,
A. F.
,
Vie
,
P. J.
, and
Kjelstrup
,
S.
,
2021
, “
Reversible Heat Effects in Cells Relevant for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
168
(
5
), p.
050522
.
44.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1988
, “Heat Transfer in Tube Banks in Crossflow”.
45.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
.
46.
Panasonic
,
2022
, ‘Specifications for ncr18650bf”.
47.
Chen
,
Z.
,
Danilov
,
D. L.
,
Raijmakers
,
L. H.
,
Chayambuka
,
K.
,
Jiang
,
M.
,
Zhou
,
L.
,
Zhou
,
J.
,
Eichel
,
R.-A.
, and
Notten
,
P. H.
,
2021
, “
Overpotential Analysis of Graphite-Based Li-Ion Batteries Seen From a Porous Electrode Modeling Perspective
,”
J. Power Sources
,
509
, p.
230345
.
48.
Patel
,
J. R.
, and
Rathod
,
M. K.
,
2022
, “
Phase Change Material Selection Using Simulation-Oriented Optimization to Improve the Thermal Performance of Lithium-Ion Battery
,”
J. Energy Storage
,
49
, pp.
103974
.
You do not currently have access to this content.