Abstract

Modern electronic devices operate at high power density due to increased processing speeds and the miniaturization of electronic chips. Conventional fan cooling alone is not effective. The thermoelectric cooler (TEC) is one of the most viable substitutes, providing site-specific, rapid, and precise cooling. In the present work, we propose an efficient thermoelectric cooler design for mitigating the cooling demand of high-end electronic components such as microprocessors, semiconductor lasers, etc. A 3D numerical model is developed using the finite element method (FEM)-based commercial software COMSOL Multiphysics to investigate the effect of various geometric and operating parameters on the cooling performance of the thermoelectric cooler. The parameters such as fill factor, leg dimensions, heat sink size, and phase change material (PCM) filling pattern in the inter-fin spacings/gaps are optimized. Two heat sink PCM designs, M1 (alternate fin gaps filled) and M2 (all fin gaps filled), are investigated for hotspot mitigation. For no-load conditions, the thermoelectric cooler module with a 20% fill factor produces a cooling of 20.5 °C with an average cooling per unit input power of 37.5 °CW−1. When a heating load of 625 W/cm2 is applied, its cold-side temperature reaches 91 °C. TEC module with n-eicosane PCM (M2 design) provides an effective cooling of 37 °C and an average cooling per unit input power of 42.3 °CW−1.

References

1.
Yeh
,
L. T.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
.
2.
Mack
,
C. A.
,
2011
, “
Fifty Years of Moore's Law
,”
IEEE Trans. Semicond. Manuf.
,
24
(
2
), pp.
202
207
.
3.
Mahajan
,
R.
,
Chiu
,
C. P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.
4.
Murshed
,
S. S.
, and
De Castro
,
C. N.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.
5.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
6.
Zuo
,
Z. J.
,
North
,
M. T.
, and
Wert
,
K. L.
,
2001
, “
High Heat Flux Heat Pipe Mechanism for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
220
225
.
7.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous, Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
23
35
.
8.
Gouda
,
R. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2018
, “
Pool Boiling Heat Transfer Enhancement With Segmented Finned Microchannels Structured Surface
,”
Int. J. Heat Mass Transfer
,
127
(
Part A
), pp.
39
50
.
9.
Sharma
,
A.
, and
Khan
,
M. K.
,
2023
, “
Heat Transfer and Flow Characteristics of Varying Curvature Wavy Microchannels
,”
Int. J. Therm. Sci.
,
185
, p.
108096
.
10.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3341
3352
.
11.
Raj
,
S.
,
Shukla
,
A.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2019
, “
A Novel Stepped Microchannel for Performance Enhancement in Flow Boiling
,”
Int. J. Heat Mass Transfer
,
144
, p.
118611
.
12.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.
13.
Goldsmid
,
H. J.
,
2016
,
Introduction to Thermoelectricity
, Vol.
121
,
Springer
,
New York
.
14.
Zhang
,
X.
, and
Zhao
,
L. D.
,
2015
, “
Thermoelectric Materials: Energy Conversion Between Heat and Electricity
,”
J. Materiomics
,
1
(
2
), pp.
92
105
.
15.
Manikandan
,
S.
,
Kaushik
,
S. C.
, and
Yang
,
R.
,
2017
, “
Modified Pulse Operation of Thermoelectric Coolers for Building Cooling Applications
,”
Energy Convers. Manage.
,
140
, pp.
145
156
.
16.
Zaferani
,
S. H.
,
Sams
,
M. W.
,
Ghomashchi
,
R.
, and
Chen
,
Z. G.
,
2021
, “
Thermoelectric Coolers as Thermal Management Systems for Medical Applications: Design, Optimization, and Advancement
,”
Nano Energy
,
90
(
Part A
), p.
106572
.
17.
Kishore
,
R. A.
,
Nozariasbmarz
,
A.
,
Poudel
,
B.
,
Sanghadasa
,
M.
, and
Priya
,
S.
,
2019
, “
Ultra-High Performance Wearable Thermoelectric Coolers With Less Materials
,”
Nat. Commun.
,
10
(
1
), p.
1765
.
18.
Mao
,
J.
,
Chen
,
G.
, and
Ren
,
Z.
,
2021
, “
Thermoelectric Cooling Materials
,”
Nat. Mater.
,
20
(
4
), pp.
454
461
.
19.
Cai
,
Y.
,
Wang
,
Y.
,
Liu
,
D.
, and
Zhao
,
F. Y.
,
2019
, “
Thermoelectric Cooling Technology Applied in the Field of Electronic Devices: Updated Review on the Parametric Investigations and Model Developments
,”
Appl. Therm. Eng.
,
148
, pp.
238
255
.
20.
Kumar
,
R.
,
Bhatt
,
R.
,
Tewary
,
A.
,
Debnath
,
A. K.
,
Bhatt
,
P.
,
Mani
,
N.
,
Jha
,
P.
, et al
,
2022
, “
Synergistic Effect of Zn Doping on Thermoelectric Properties to Realize a High Figure-of-Merit and Conversion Efficiency in Bi2−xZnxTe3 Based Thermoelectric Generators
,”
J. Mater. Chem. C
,
10
(
20
), pp.
7970
7979
.
21.
Soleimani
,
Z.
,
Zoras
,
S.
,
Ceranic
,
B.
,
Shahzad
,
S.
, and
Cui
,
Y.
,
2020
, “
A Review on Recent Developments of Thermoelectric Materials for Room-Temperature Applications
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100604
.
22.
Lan
,
Y.
,
Minnich
,
A. J.
,
Chen
,
G.
, and
Ren
,
Z.
,
2010
, “
Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach
,”
Adv. Funct. Mater.
,
20
(
3
), pp.
357
376
.
23.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
, et al
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.
24.
Mao
,
J.
,
Zhu
,
H.
,
Ding
,
Z.
,
Liu
,
Z.
,
Gamage
,
G. A.
,
Chen
,
G.
, and
Ren
,
Z.
,
2019
, “
High Thermoelectric Cooling Performance of n-Type Mg3Bi2-Based Materials
,”
Science
,
365
(
6452
), pp.
495
498
.
25.
Deng
,
R.
,
Su
,
X.
,
Hao
,
S.
,
Zheng
,
Z.
,
Zhang
,
M.
,
Xie
,
H.
,
Liu
,
W.
, et al
,
2018
, “
High Thermoelectric Performance in Bi0.46 Sb1.54Te3 Nanostructured With ZnTe
,”
Energy Environ. Sci.
,
11
(
6
), pp.
1520
1535
.
26.
Chein
,
R.
, and
Huang
,
G.
,
2004
, “
Thermoelectric Cooler Application in Electronic Cooling
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2207
2217
.
27.
Seo
,
Y. M.
,
Ha
,
M. Y.
,
Park
,
S. H.
,
Lee
,
G. H.
,
Kim
,
Y. S.
, and
Park
,
Y. G.
,
2018
, “
A Numerical Study on the Performance of the Thermoelectric Module With Different Heat Sink Shapes
,”
Appl. Therm. Eng.
,
128
, pp.
1082
1094
.
28.
Ansari
,
D.
, and
Jeong
,
J. H.
,
2020
, “
A Novel Composite Pinfin Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
156
, p.
119843
.
29.
Elghool
,
A.
,
Basrawi
,
F.
,
Ibrahim
,
T. K.
,
Habib
,
K.
,
Ibrahim
,
H.
, and
Idris
,
D. M. N. D.
,
2017
, “
A Review on Heat Sink for Thermo-Electric Power Generation: Classifications and Parameters Affecting Performance
,”
Energy Convers. Manage.
,
134
, pp.
260
277
.
30.
Baldry
,
M.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2019
, “
Optimal Design of a Natural Convection Heat Sink for Small Thermoelectric Cooling Modules
,”
Appl. Therm. Eng.
,
160
, p.
114062
.
31.
Cuce
,
E.
,
Guclu
,
T.
, and
Cuce
,
P. M.
,
2020
, “
Improving Thermal Performance of Thermoelectric Coolers (TECs) Through a Nanofluid Driven Water to Air Heat Exchanger Design: An Experimental Research
,”
Energy Convers. Manage.
,
214
, p.
112893
.
32.
Kwan
,
T. H.
,
Zhao
,
B.
,
Liu
,
J.
,
Xi
,
Z.
, and
Pei
,
G.
,
2020
, “
Enhanced Cooling by Applying the Radiative Sky Cooler to Both Ends of the Thermoelectric Cooler
,”
Energy Convers. Manage.
,
212
, p.
112785
.
33.
Dizaji
,
H. S.
,
Jafarmadar
,
S.
,
Khalilarya
,
S.
, and
Moosavi
,
A.
,
2016
, “
An Exhaustive Experimental Study of a Novel Air-Water Based Thermoelectric Cooling Unit
,”
Appl. Energy
,
181
, pp.
357
366
.
34.
Lv
,
H.
,
Wang
,
X. D.
,
Meng
,
J. H.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2016
, “
Enhancement of Maximum Temperature Drop Across Thermoelectric Cooler Through Two-Stage Design and Transient Supercooling Effect
,”
Appl. Energy
,
175
, pp.
285
292
.
35.
Ma
,
M.
, and
Yu
,
J.
,
2016
, “
Experimental Study on Transient Cooling Characteristics of a Realistic Thermoelectric Module Under a Current Pulse Operation
,”
Energy Convers. Manage.
,
126
, pp.
210
216
.
36.
Hassan
,
F.
,
Hussain
,
A.
,
Jamil
,
F.
,
Arshad
,
A.
, and
Ali
,
H. M.
,
2022
, “
Passive Cooling Analysis of an Electronic Chipset Using Nanoparticles and Metal-Foam Composite PCM: An Experimental Study
,”
Energies
,
15
(
22
), p.
8746
.
37.
Fok
,
S. C.
,
Shen
,
W.
, and
Tan
,
F. L.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
.
38.
Ali
,
H. M.
,
2022
, “
An Experimental Study for Thermal Management Using Hybrid Heat Sinks Based on Organic Phase Change Material, Copper Foam and Heat Pipe
,”
J. Energy Storage
,
53
, p.
105185
.
39.
Lawag
,
R. A.
,
Ali
,
H. M.
,
Zahir
,
M. H.
, and
Qureshi
,
B. A.
,
2023
, “
Investigation of PT58 and PEG-6000-Based Finned Heat Sinks­ for Thermal Management of Electronics
,”
J. Cleaner Prod.
,
390
, p.
136101
.
40.
Behi
,
H.
,
Ghanbarpour
,
M.
, and
Behi
,
M.
,
2017
, “
Investigation of PCM-Assisted Heat Pipe for Electronic Cooling
,”
Appl. Therm. Eng.
,
127
, pp.
1132
1142
.
41.
Weng
,
Y. C.
,
Cho
,
H. P.
,
Chang
,
C. C.
, and
Chen
,
S. L.
,
2011
, “
Heat Pipe With PCM for Electronic Cooling
,”
Appl. Energy
,
88
(
5
), pp.
1825
1833
.
42.
Tan
,
G.
, and
Zhao
,
D.
,
2015
, “
Study of a Thermoelectric Space Cooling System Integrated With Phase Change Material
,”
Appl. Therm. Eng.
,
86
, pp.
187
198
.
43.
Desai
,
A. N.
,
Shah
,
H.
, and
Singh
,
V. K.
,
2021
, “
Novel Inverted Fin Configurations for Enhancing the Thermal Performance of PCM Based Thermal Control Unit: A Numerical Study
,”
Appl. Therm. Eng.
,
195
, p.
117155
.
44.
Selvam
,
C.
,
Manikandan
,
S.
,
Kaushik
,
S. C.
,
Lamba
,
R.
, and
Harish
,
S.
,
2019
, “
Transient Performance of a Peltier Super Cooler Under Varied Electric Pulse Conditions With Phase Change Material
,”
Energy Convers. Manage.
,
198
, p.
111822
.
45.
Krishna
,
N. V.
,
Manikandan
,
S.
, and
Selvam
,
C.
,
2022
, “
Enhanced Performance of Thermoelectric Cooler With Phase Change Materials: An Experimental Study
,”
Appl. Therm. Eng.
,
212
, p.
118612
.
46.
Cai
,
Y.
,
Hong
,
B. H.
,
Wu
,
W. X.
,
Wang
,
W. W.
, and
Zhao
,
F. Y.
,
2022
, “
Active Cooling Performance of a PCM-Based Thermoelectric Device: Dynamic Characteristics and Parametric Investigations
,”
Energy
,
254
, p.
124356
.
47.
de Oca
,
O. Y. E. M.
,
Olivares-Robles
,
, and
Ruiz-Ortega
,
P. E.
,
2022
, “
A Novel Mechanism for Thermal Management at the Cold Side of a Pulsed Two-Stage Thermoelectric Micro-Cooler With Different PCM Heat Sink Shapes
,”
Energy Rep.
,
8
, pp.
6929
6944
.
48.
Hu
,
X.
,
Jood
,
P.
,
Ohta
,
M.
,
Kunii
,
M.
,
Nagase
,
K.
,
Nishiate
,
H.
,
Kanatzidis
,
M. G.
, and
Yamamoto
,
A.
,
2016
, “
Power Generation From Nanostructured PbTe-Based Thermoelectrics: Comprehensive Development From Materials to Modules
,”
Energy Environ. Sci.
,
9
(
2
), pp.
517
529
.
50.
Muhammad
,
M. D.
,
Badr
,
O.
, and
Yeung
,
H.
,
2015
, “
Validation of a CFD Melting and Solidification Model for Phase Change in Vertical Cylinders
,”
Numer. Heat Transfer, Part A
,
68
(
5
), pp.
501
511
.
51.
Selvam
,
C.
,
Manikandan
,
S.
,
Krishna
,
N. V.
,
Lamba
,
R.
,
Kaushik
,
S. C.
, and
Mahian
,
O.
,
2020
, “
Enhanced Thermal Performance of a Thermoelectric Generator With Phase Change Materials
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104561
.
52.
Kishore
,
R. A.
,
Nozariasbmarz
,
A.
,
Poudel
,
B.
, and
Priya
,
S.
,
2020
, “
High-Performance Thermoelectric Generators for Field Deployments
,”
ACS Appl. Mater. Interfaces
,
12
(
9
), pp.
10389
10401
.
You do not currently have access to this content.