Abstract

Compressibility and rarefaction effect plays an essential role in the design and study of objects experiencing hypersonic flows. The presence of chemical and thermal non-equilibrium in hypersonic flows increases the complexity of estimating aerothermodynamic properties, which are essential for developing thermal protection systems and the aerothermodynamic design of hypersonic vehicles. In this study, the hy2Foam solver, developed in an OpenFOAM framework by hyStrath group, is used to understand the effect of Knudsen number (which in turn depends on the altitude) and freestream enthalpy variation on the surface aerothermodynamic properties such as pressure, heat flux, velocity slip, temperature jump, and flow field variables such as species concentration and temperature, in five-species air flow over a cylinder, for both noncatalytic and fully catalytic wall conditions. The novelty of the work lies in reporting the effect of rarefaction on thermal and chemical non-equilibrium (associated with hypersonic flows), and thus on the surface properties under different enthalpy and wall catalytic conditions. It has been shown that the rarefaction effect is more pronounced on the vibrational temperature component and for high enthalpy gas. The surface wall heat flux and the chemical reaction rate among the species decrease with rarefaction. The skin friction coefficient is one of the most sensitive properties, while the pressure coefficient has been the least susceptible to non-equilibrium effects. The stagnation points heat flux at different Knudsen numbers shows good agreement with the existing correlation in literature for both low and high enthalpy flows, which further establishes the validity of the study done in this work.

References

1.
Anderson
,
J. D.
,
2019
,
Hypersonic and High-Temperature Gas Dynamics
, 3rd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Assam
,
A.
,
Nived
,
M.
,
Kalkote
,
N. N.
, and
Eswaran
,
V.
,
2020
, “
A Numerical Study of Shock and Heating With Rarefaction for Hypersonic Flow Over a Cylinder
,”
ASME J. Heat Mass Trans.
,
142
(
1
), p.
014501
.
3.
Hollis
,
B. R.
,
Berger
,
K. T.
,
Berry
,
S. A.
,
Brauckmann
,
G. J.
,
Buck
,
G. M.
,
DiFulvio
,
M.
,
Horvath
,
T. J.
, et al.,
2014
, “
Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions
,” 52nd Aerospace Sciences Meeting, National Harbor, MD, Jan. 13–17, p.
1154
.
4.
Lani
,
A.
,
Villedie
,
N.
,
Bensassi
,
K.
,
Koloszar
,
L.
,
Vymazal
,
M.
,
Yalim
,
S. M.
, and
Panesi
,
M.
,
2013
, “
COOLFluiD: An Open Computational Platform for Multi-Physics Simulation and Research
,”
21st AIAA Computational Fluid Dynamics Conference
,
San Diego, CA
,
June 24–27
, p.
2598
.
5.
Casseau
,
V.
,
2017
, “
An Open-Source CFD Solver for Planetary Entry
,” Ph.D. thesis,
University of Strathclyde
,
Strathclyde, UK
.
6.
Casseau
,
V.
,
2021
, “
Github Repository of the hyStrath Platform
,” https://github.com/vincentcasseau/hyStrath/, Release ‘Fleming’, commit f10c3af.
7.
Maier
,
W. T.
,
Needels
,
J. T.
,
Garbacz
,
C.
,
Morgado
,
F.
,
Alonso
,
J. J.
, and
Fossati
,
M.
,
2021
, “
SU2-NEMO: An Open-Source Framework for High-Mach Nonequilibrium Multi-Species Flows
,”
Aerospace
,
8
(
7
), p.
193
.
8.
Schmisseur
,
J. D.
, and
Erbland
,
P.
,
2012
, “
Introduction: Assessment of Aerothermodynamic Flight Prediction Tools Through Ground and Flight Experimentation
,”
Prog. Aerosp. Sci.
,
48–49
, pp.
2
7
.
9.
Tumuklu
,
O.
,
Levin
,
D. A.
, and
Theofilis
,
V.
,
2019
, “
Kinetic Modeling of Unsteady Hypersonic Flows Over a Tick Geometry
,”
Phys. Fluids
,
31
(
5
), p.
056108
.
10.
Nabapure
,
D.
, and
Murthy
,
K. R. C.
,
2021
, “
DSMC Investigation of Rarefied Gas Flow Over a 2D Forward-Facing Step: Effect of Knudsen Number
,”
Acta Astronautica
,
178
, pp.
89
109
.
11.
Lofthouse
,
A. J.
,
2008
, “
Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier–Stokes Models
,” Ph.D. thesis,
US Air Force Research Laboratory
,
Ohio
.
12.
Votta
,
R.
,
Schettino
,
A.
,
Ranuzzi
,
G.
, and
Borrelli
,
S.
,
2009
, “
Hypersonic Low-Density Aerothermodynamics of Orion-Like Exploration Vehicle
,”
J. Spacecr. Rockets
,
46
(
4
), pp.
781
787
.
13.
Holman
,
T. D.
, and
Boyd
,
I. D.
,
2011
, “
Effects of Continuum Breakdown on Hypersonic Aerothermodynamics for Reacting Flow
,”
Phys. Fluids
,
23
(
2
), p.
027101
.
14.
Casseau
,
V.
,
Palharini
,
R. C.
,
Scanlon
,
T. J.
, and
Brown
,
R. E.
,
2016
, “
A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows
,”
Part One: Zero-Dimens. Anal. Aerosp.
,
3
(
4
), p.
34
.
15.
Casseau
,
V.
,
Espinoza
,
D. E. R.
,
Scanlon
,
T. J.
, and
Brown
,
R. E.
,
2016
, “
A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows
,”
Part Two: Multi-Dimens. Anal. Aerosp.
,
3
(
4
), p.
35
.
16.
Bouyahiaoui
,
Z.
,
Haoui
,
R.
,
Zidane
,
A.
, and
Nouiri
,
A.
,
2020
, “
Prediction of the Flow Field and Convective Heating During Space Capsule Reentry Using an Open Source Solver
,”
Int. J. Heat Mass Transfer
,
148
, p.
119045
.
17.
Bird
,
G.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, Vol.
1
,
Clarendon Press
,
New York
.
18.
Landau
,
L.
,
1965
, “Theory of Sound Dispersion,”
Collected Papers of L.D. Landau
, Vol.
1
,
D.
Ter Haar
, ed.,
Pergamon
,
Oxford, UK
, pp.
34
153
.
19.
Park
,
C.
,
1989
,
Nonequilibrium Hypersonic Aerothermodynamics
,
John Wiley & Sons
,
New York
.
20.
Gnoffo
,
P. A.
,
1989
,
Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium
,
National Aeronautics and Space Administration, Office of Management
,
Reston, VA
.
21.
Wilke
,
C.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.
22.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1975
,
Introduction to Physical Gas Dynamics
,
Krieger Pub Co
,
Malabar, FL
.
23.
Blottner
,
F. G.
,
Johnson
,
M.
, and
Ellis
,
M.
,
1971
, “
Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures
,”
Sandia Labs.
,
Albuquerque, NM
, Tech. Rep. SC-RR-70-754.
24.
Gupta
,
R. N.
,
Yos
,
J. M.
,
Thompson
,
R. A.
, and
Lee
,
K.-P.
,
1990
, “
A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K
,” NASA Technical Reports Server, Tech. Rep. 19900017748.
25.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. Lond.
,
170
, pp.
231
256
.
26.
Smoluchowski von Smolan
,
M.
,
1898
, “
Ueber wärmeleitung in verdünnten gasen
,”
Ann. Phys.
,
300
(
1
), pp.
101
130
.
27.
Le
,
N. T.
,
Vu
,
N. A.
, and
Loc
,
L. T.
,
2016
, “
New Type of Smoluchowski Temperature Jump Condition Considering the Viscous Heat Generation
,”
AIAA J.
,
55
(
2
), pp.
474
483
.
28.
Assam
,
A.
,
Kalkote
,
N.
,
Dongari
,
N.
, and
Eswaran
,
V.
,
2018
, “
Comprehensive Evaluation of a New Type of Smoluchowski Temperature Jump Condition
,”
AIAA J.
,
56
(
11
), pp.
4621
4625
.
29.
Assam
,
A.
,
Kalkote
,
N.
,
Dongari
,
N.
, and
Eswaran
,
V.
,
2019
, “
Investigation of Non-equilibrium Boundary Conditions Considering Sliding Friction for Micro/Nano Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
8
), pp.
2501
2523
.
30.
Assam
,
A.
,
2019
, “
Development of an Unstructured CFD Solver for External Aerothermodynamics and Nano/Micro Flows
,” Ph.D. thesis,
Indian Institute of Technology Hyderabad
,
Hyderabad, India
.
31.
Le
,
N. T. P.
,
2010
, “
Nonequilibrium Boundary Conditions for the Navier–Stokes–Fourier Equations in Hypersonic Gas Flow Simulations
,” Ph.D. thesis,
University of Strathclyde
,
Strathclyde, UK
.
32.
Karl
,
S.
,
Martinez Schramm
,
J.
, and
Hannemann
,
K.
,
2003
, “
High Enthalpy Cylinder Flow in HEG: A Basis for CFD Validation
,”
33rd AIAA Fluid Dynamics Conference and Exhibit
,
Orlando, FL
,
June 23–26
, p.
4252
.
33.
Chen
,
L.
,
Guo
,
Z.
,
Hou
,
Z.
,
Wenkai
,
W.
, and
Huang
,
C.
,
2017
, “
Numerical Study of Hypersonic Aerodynamics and Heating on a Cylinder at Mach 6
,”
21st AIAA International Space Planes and Hypersonics Technologies Conference
,
Xiamen, China
,
Mar. 6–9
, p.
2162
.
34.
Liu
,
J.-X.
,
Hou
,
Z.-X.
,
Chen
,
X.-Q.
, and
Zhang
,
J.-T.
,
2013
, “
Experimental and Numerical Study on the Aero-Heating Characteristics of Blunted Waverider
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
301
314
.
35.
Men’shov
,
I. S.
, and
Nakamura
,
Y.
,
2000
, “
Numerical Simulations and Experimental Comparisons for High-Speed Nonequilibrium Air Flows
,”
Fluid Dyn. Res.
,
27
(
5
), p.
305
.
36.
Bertin
,
J. J.
, and
Cummings
,
R. M.
,
2006
, “
Critical Hypersonic Aerothermodynamic Phenomena
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
129
157
.
37.
Knight
,
D.
,
Longo
,
J.
,
Drikakis
,
D.
,
Gaitonde
,
D.
,
Lani
,
A.
,
Nompelis
,
I.
,
Reimann
,
B.
, and
Walpot
,
L.
,
2012
, “
Assessment of CFD Capability for Prediction of Hypersonic Shock Interactions
,”
Prog. Aerosp. Sci.
,
48
, pp.
8
26
.
38.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
39.
Xiwan
,
S.
,
Huang
,
W.
,
Min
,
O.
,
Zhang
,
R.
, and
Shibin
,
L.
,
2019
, “
A Survey on Numerical Simulations of Drag and Heat Reduction Mechanism in Supersonic/Hypersonic Flows
,”
Chin. J. Aeronaut.
,
32
(
4
), pp.
771
784
.
40.
Ou
,
M.
,
Yan
,
L.
,
Huang
,
W.
,
Li
,
S.-B.
, and
Li
,
L.-Q.
,
2018
, “
Detailed Parametric Investigations on Drag and Heat Flux Reduction Induced by a Combinational Spike and Opposing Jet Concept in Hypersonic Flows
,”
Int. J. Heat Mass Transfer
,
126
, pp.
10
31
.
41.
Huang
,
J.
,
Bretzke
,
J.-V.
, and
Duan
,
L.
,
2019
, “
Assessment of Turbulence Models in a Hypersonic Cold-Wall Turbulent Boundary Layer
,”
Fluids
,
4
(
1
), p.
37
.
42.
Howard
,
C. S.
, and
Daniels
,
F.
,
1958
, “
Stability of Nitric Oxide Over a Long Time Interval
,”
J. Phys. Chem.
,
62
(
3
), pp.
360
361
.
43.
Sutton
,
K.
, and
Graves Jr
,
R. A.
,
1971
, “
A General Stagnation-Point Convective Heating Equation for Arbitrary Gas Mixtures
,” NASA Langley Research Center Hamptons, Tech. Rep. NASA-TR-R-376.
44.
Zhang
,
R.-R.
,
Huang
,
W.
,
Li
,
L.-Q.
,
Yan
,
L.
, and
Moradi
,
R.
,
2018
, “
Drag and Heat Flux Reduction Induced by the Pulsed Counterflowing Jet With Different Periods on a Blunt Body in Supersonic Flows
,”
Int. J. Heat Mass Transfer
,
127
, pp.
503
512
.
45.
Wang
,
Z.-G.
,
Sun
,
X.-W.
,
Huang
,
W.
,
Li
,
S.-B.
, and
Yan
,
L.
,
2016
, “
Experimental Investigation on Drag and Heat Flux Reduction in Supersonic/Hypersonic Flows: A Survey
,”
Acta Astronaut.
,
129
, pp.
95
110
.
46.
Li
,
S.
,
Huang
,
W.
,
Lei
,
J.
, and
Wang
,
Z.
,
2018
, “
Drag and Heat Reduction Mechanism of the Porous Opposing Jet for Variable Blunt Hypersonic Vehicles
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1087
1098
.
You do not currently have access to this content.