Abstract

This paper presents a numerical investigation on the flow and heat-transfer characteristics of liquid lithium and helium in printed circuit heat exchanger (PCHE) channels with pulsating flow introduced. The effects of the mass flowrate of helium, frequency, and amplitude of pulsating flow were examined, respectively. The findings indicate that the introduced pulsating flow has a positive effect on heat transfer at a lower Reynolds number. With the increase of pulsating frequency, the heat-transfer enhancement may decline, and the pressure drop is reduced, with Colburn factor (j) and Fanning friction factor (f) varying marginally. In the flow state with enhanced heat transfer, keeping a lower pulsating frequency, the heat-transfer enhancement ratio E(h) exhibits an approximately linear increase with the pulsating amplitude. Meanwhile, the average pressure drop, Colburn factor (j) and Fanning friction factor (f) also increase with the amplitude, with the fluctuation amplitude of each parameter directly proportional to the amplitude.

References

1.
Baek
,
S.
,
Kim
,
J.-H.
,
Jeong
,
S.
, and
Jung
,
J.
,
2012
, “
Development of Highly Effective Cryogenic Printed Circuit Heat Exchanger (PCHE) With Low Axial Conduction
,”
Cryogenics
,
52
(
7–9
), pp.
366
374
.
2.
Huang
,
C.
,
Cai
,
W.
,
Wang
,
Y.
,
Liu
,
Y.
,
Li
,
Q.
, and
Li
,
B.
,
2019
, “
Review on the Characteristics of Flow and Heat Transfer in Printed Circuit Heat Exchangers
,”
Appl. Therm. Eng.
,
153
, pp.
190
205
.
3.
Lu
,
P.
,
Yang
,
Q.
,
Wei
,
J.
,
Wu
,
P.
, and
Huang
,
H.
,
2022
, “
Comprehensive Numerical Analysis on Flow and Heat Transfer Characteristics of Printed Circuit Heat Exchanger With Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071015
.
4.
Shi
,
H.
,
Di Miceli Raimondi
,
N.
,
Cabassud
,
M.
, and
Gourdon
,
C.
,
2022
, “
Experimental Study of Heat Transfer Coefficient in Heat Exchanger Reactors With Square Millimetric Zigzag Channels
,”
Chem. Eng. Process-Process Intensification
,
182
, p.
109194
.
5.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renew. Sust. Energy Rev.
,
49
, pp.
444
469
.
6.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Hyun
,
J. M.
,
1993
, “
Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4257
4266
.
7.
Kurtulmuş
,
N.
, and
Sahin
,
B.
,
2020
, “
Experimental Investigation of Pulsating Flow Structures and Heat Transfer Characteristics in Sinusoidal Channels
,”
Int. J. Mech. Sci.
,
167
, p.
105268
.
8.
Huang
,
H.
,
Bian
,
Y.
,
Liu
,
Y.
,
Zhang
,
F.
,
Arima
,
H.
, and
Ikegami
,
Y.
,
2018
, “
Numerical and Experimental Analysis of Heat Transfer Enhancement and Pressure Drop Characteristics of Laminar Pulsatile Flow in Grooved Channel With Different Groove Lengths
,”
Appl. Therm. Eng.
,
137
, pp.
632
643
.
9.
Guo
,
Z.
, and
Sung
,
H. J.
,
1997
, “
Analysis of the Nusselt Number in Pulsating Pipe Flow
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2486
2489
.
10.
Elshafei
,
E. A. M.
,
Safwat Mohamed
,
M.
,
Mansour
,
H.
, and
Sakr
,
M.
,
2008
, “
Experimental Study of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1029
1038
.
11.
Wantha
,
C.
,
2016
, “
Effect and Heat Transfer Correlations of Finned Tube Heat Exchanger Under Unsteady Pulsating Flows
,”
Int. J. Heat Mass Transfer
,
99
, pp.
141
148
.
12.
Moschandreou
,
T.
, and
Zamir
,
M.
,
1997
, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2461
2466
.
13.
Xu
,
C.
,
Xu
,
S.
,
Wei
,
S.
, and
Chen
,
P.
,
2020
, “
Experimental Investigation of Heat Transfer for Pulsating Flow of GOPs-Water Nanofluid in a Microchannel
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104403
.
14.
Lovik
,
R.
,
Abraham
,
J.
,
Minkowycz
,
W.
, and
Sparrow
,
E.
,
2009
, “
Laminarization and Turbulentization in a Pulsatile Pipe Flow
,”
Numer. Heat Transfer, Part A: Appl.
,
56
(
11
), pp.
861
879
.
15.
Gebreegziabher
,
T.
,
Sparrow
,
E.
,
Abraham
,
J.
,
Ayorinde
,
E.
, and
Singh
,
T.
,
2011
, “
High-Frequency Pulsatile Pipe Flows Encompassing All Flow Regimes
,”
Numer. Heat Transfer, Part A: Applications
,
60
(
10
), pp.
811
826
.
16.
Mehta
,
B.
, and
Khandekar
,
S.
,
2015
, “
Local Experimental Heat Transfer of Single-Phase Pulsating Laminar Flow in a Square Mini-Channel
,”
Int. J. Therm. Sci.
,
91
, pp.
157
166
.
17.
Hemida
,
H.
,
Sabry
,
M.-N.
,
Abdel-Rahim
,
A.
, and
Mansour
,
H.
,
2002
, “
Theoretical Analysis of Heat Transfer in Laminar Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1767
1780
.
18.
Mehta
,
B.
, and
Khandekar
,
S.
,
2010
, “
Effect of Periodic Pulsations on Heat Transfer in Simultaneously Developing Laminar Flows: a Numerical Study
,”
International Heat Transfer Conference
,
Washington, DC
,
Aug. 8–13
, pp.
569
576
, Paper No. HTC14-22519.
19.
Nandi
,
T. K.
, and
Chattopadhyay
,
H.
,
2016
, “
Numerical Simulation of Heat Transfer on Simultaneously Developing Flow in Microchannel Under Inlet Pulsation
,”
Int. J. Fluid Mech. Res.
,
43
(
3
), pp.
218
233
.
20.
Liu
,
B.
,
Lu
,
M.
,
Shui
,
B.
,
Sun
,
Y.
, and
Wei
,
W.
,
2022
, “
Thermal-Hydraulic Performance Analysis of Printed Circuit Heat Exchanger Precooler in the Brayton Cycle for Supercritical CO2 Waste Heat Recovery
,”
Appl. Energy
,
305
, p.
117923
.
21.
Wijayanta
,
A. T.
,
Yaningsih
,
I.
,
Aziz
,
M.
,
Miyazaki
,
T.
, and
Koyama
,
S.
,
2018
, “
Double-Sided Delta-Wing Tape Inserts to Enhance Convective Heat Transfer and Fluid Flow Characteristics of a Double-Pipe Heat Exchanger
,”
Appl. Therm. Eng.
,
145
, pp.
27
37
.
You do not currently have access to this content.