Abstract

With the development of technology, people are demanding more comfort in their lives, leading to an increasing demand for space cooling. The traditional cooling process produces a great amount of energy consumption and carbon emission, which puts tremendous pressure on the environment. Direct evaporative cooling technology is a good choice for reducing energy consumption and carbon emissions. However, most of the current direct evaporative coolers offer excellent cooling performance at any temperature, whether the space needs to be cooled or heated. The unwanted evaporation cooling at low temperature will increase the heating energy consumption of air conditioners. Here, an adaptive evaporative cooling structure that can intelligently adjust the evaporative cooling ability according to the ambient temperature is proposed. The structure consists of temperature-sensitive hydrogel (prepared by chemical synthesis), perforated polyethylene terephthalate (PET), and silica coating (prepared by screen printing and hot pressing technology), and the evaporation rate of the cooler is regulated by both the hydrogel and the porous membrane. The cooler can maintain high-efficiency cooling performance during the hot time, while suppressing the cooler's overcooling behavior at low temperatures to achieve more efficient energy savings. When the ambient temperature is higher than 36 °C, its cooling capacity can reach 10 °C. And when the temperature is lower than 18 °C, it can inhibit the temperature difference to less than 1 °C. This cooler structure has important application prospects in these fields such as building, automobile, and personal wearable device. It can substantially reduce the energy consumption and environmental pollution.

References

1.
IPCC
, “
Climate Change 2013: The Physical Science Basis
,” http://www.ipcc.ch/report/ar5/wg1/, Accessed February 7, 2022.
2.
IPCC
, “
The Science of Climate Change
,” http://www.ipcc.ch/report/ar2/wg1/, Accessed February 7, 2022.
3.
Jean-Luc
,
D.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Zhao
,
G.
,
2020
, “
The Role of Refrigeration in the Global Economy—38th IIR Informatory Note on Refrigeration Technologies
,”
Chin. J. Refrig. Technol.
,
40
(
1
), pp.
1
8
.
4.
Xu
,
C.
,
Jia
,
Y.
,
Yan
,
X.
, and
Tian
,
Z.
,
2012
, “
Semiconductor Refrigeration Technology and its Application
,”
J. Mech. Eng. Automat
,
6
(
3
), pp.
209
211
.
5.
Yu
,
M.
, and
Zou
,
Z.
,
2020
, “
Design of Structure and Control System of Semiconductor Refrigeration Box
,”
Chin. J. Chem. Eng.
,
28
(
11
), pp.
2792
2798
.
6.
Ahamed
,
J.
,
Saidur
,
R.
, and
Masjuki
,
H.
,
2011
, “
A Review on Exergy Analysis of Vapor Compression Refrigeration System
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1593
1600
.
7.
Yumrutaş
,
R.
,
Kunduz
,
M.
, and
Kanoğlu
,
M.
,
2002
, “
Exergy Analysis of Vapor Compression Refrigeration Systems
,”
Exergy
,
2
(
4
), pp.
266
272
.
8.
Timbie
,
P.
,
Bernstein
,
G.
, and
Richards
,
P.
,
1990
, “
Development of an Adiabatic Demagnetization Refrigerator for SIRTF
,”
Cryogenics
,
30
(
3
), pp.
271
275
.
9.
Jang
,
D.
,
Gruner
,
T.
,
Steppke
,
A.
,
Mitsumoto
,
K.
,
Geibel
,
C.
, and
Brando
,
M.
,
2015
, “
Large Magnetocaloric Effect and Adiabatic Demagnetization Refrigeration With YbPt2Sn
,”
Nat. Commun.
,
6
(
1
), p.
8680
.
10.
Cohen-Tannoudji
,
C.
, and
Phillips
,
W.
,
1990
, “
New Mechanisms for Laser Cooling
,”
Phys. Today
,
43
(
10
), pp.
33
40
.
11.
Tarbutt
,
M.
,
2019
, “
Laser Cooling of Molecules
,”
Contemporary Phys.
,
59
(
4
), pp.
356
376
.
12.
Rafique
,
M.
,
Gandhidasan
,
P.
,
Rehman
,
S.
, and
Al-Hadhrami
,
L.
,
2015
, “
A Review on Desiccant Based Evaporative Cooling Systems
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
145
159
.
13.
Amer
,
O.
,
Boukhanouf
,
R.
, and
Ibrahim
,
H.
,
2015
, “
A Review of Evaporative Cooling Technologies
,”
Int. J. Environ. Sci. Dev.
,
6
(
2
), pp.
111
117
.
14.
Li
,
J.
,
Chen
,
C.
,
Gan
,
W.
,
Li
,
Z.
,
Xie
,
H.
,
Jiao
,
M.
, and
Hu
,
L.
,
2021
, “
A Bio-Inspired, Hierarchically Porous Structure With a Decoupled Fluidic Transportation and Evaporative Pathway Toward High-Performance Evaporation
,”
J. Mater. Chem. A
,
9
(
15
), pp.
9745
9752
.
15.
Wang
,
C.
,
Hua
,
L.
,
Yan
,
H.
,
Li
,
B.
,
Tu
,
Y.
, and
Wang
,
R.
,
2020
, “
A Thermal Management Strategy for Electronic Devices Based on Moisture Sorption-Desorption Processes
,”
Joule
,
4
(
2
), pp.
435
447
.
16.
Lv
,
J.
,
Xu
,
H.
,
Zhu
,
M.
,
Dai
,
Y.
,
Liu
,
H.
, and
Li
,
Z.
,
2021
, “
The Performance and Model of Porous Materials in the Indirect Evaporative Cooling System: A Review
,”
J. Build. Eng.
,
41
, p.
102741
.
17.
Feng
,
C.
,
Yang
,
P.
,
Liu
,
H.
,
Mao
,
M.
,
Liu
,
Y.
,
Xue
,
T.
, and
Liu
,
K.
,
2021
, “
Bilayer Porous Polymer for Efficient Passive Building Cooling
,”
Nano Energy
,
85
, p.
105971
.
18.
Pu
,
S.
,
Fu
,
J.
,
Liao
,
Y.
,
Ge
,
L.
,
Zhou
,
Y.
,
Zhang
,
S.
, and
Chen
,
J.
,
2020
, “
Promoting Energy Efficiency via a Self-Adaptive Evaporative Cooling Hydrogel
,”
Adv. Mater.
,
32
(
17
), p.
1907307
.
19.
Zamengo
,
M.
, and
Morikawa
,
J.
,
2019
, “
Evaluation of Cooling Ability for a Novel Heat Sink Made of Polyvinyl Alcohol Hydrogel
,”
Int. J. Heat Mass Transfer
,
143
, p.
118523
.
20.
Rotzetter
,
A.
,
Schumacher
,
C.
,
Bubenhofer
,
S.
,
Grass
,
R.
,
Gerber
,
L.
,
Zeltner
,
M.
, and
Stark
,
W.
,
2012
, “
Thermoresponsive Polymer Induced Sweating Surfaces as an Efficient Way to Passively Cool Buildings
,”
Adv. Mater.
,
24
(
39
), pp.
5352
5356
.
21.
Tiwari
,
G.
,
Kumar
,
A.
, and
Sodha
,
M.
,
1982
, “
A Review—Cooling by Water Evaporation Over Roof
,”
Energy Convers. Manage.
,
22
(
2
), pp.
143
153
.
22.
Belarbi
,
R.
,
Ghiaus
,
C.
, and
Allard
,
F.
,
2006
, “
Modeling of Water Spray Evaporation: Application to Passive Cooling of Buildings
,”
Sol. Energy
,
80
(
12
), pp.
1540
1552
.
23.
Haidar
,
Z.
,
Orfi
,
J.
, and
Kaneesamkandi
,
Z.
,
2020
, “
Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches
,”
Energies
,
14
(
1
), p.
145
.
24.
Alktranee
,
M.
, and
Bencs
,
P.
,
2022
, “
Effect of Evaporative Cooling on Photovoltaic Module Performance
,”
Proc. Integr. Optim. Sustain.
,
6
(
4
), pp.
921
930
.
25.
Lu
,
Z.
,
Strobach
,
E.
,
Chen
,
N.
,
Ferralis
,
N.
, and
Grossman
,
J.
,
2020
, “
Passive Sub-Ambient Cooling From a Transparent Evaporation-Insulation Bilayer
,”
Joule
,
4
(
12
), pp.
2693
2701
.
26.
Tang
,
K.
,
Dong
,
K.
,
Li
,
J.
,
Gordon
,
M.
,
Reichertz
,
F.
,
Kim
,
H.
, and
Wu
,
J.
,
2021
, “
Temperature-Adaptive Radiative Coating for All-Season Household Thermal Regulation
,”
Science
,
374
(
6574
), pp.
1504
1509
.
27.
Schild
,
H.
,
1992
, “
Poly (N-Isopropylacrylamide): Experiment, Theory and Application
,”
Prog. Polym. Sci.
,
17
(
2
), pp.
163
249
.
28.
Heskins
,
M.
, and
Guillet
,
J.
,
1968
, “
Solution Properties of Poly (N-Isopropylacrylamide)
,”
J. Macromol. Sci. Chem.
,
2
(
8
), pp.
1441
1455
.
29.
Halperin
,
A.
,
Kröger
,
M.
, and
Winnik
,
F.
,
2015
, “
Poly (N-Isopropylacrylamide) Phase Diagrams: Fifty Years of Research
,”
Angew. Chem., Int. Ed.
,
54
(
51
), pp.
15342
15367
.
30.
Fang
,
Z.
,
Ding
,
L.
,
Li
,
L.
,
Shuai
,
K.
,
Cao
,
B.
,
Zhong
,
Y.
, and
Xia
,
Z.
,
2021
, “
Thermal Homeostasis Enabled by Dynamically Regulating the Passive Radiative Cooling and Solar Heating Based on a Thermochromic Hydrogel
,”
ACS Photonics
,
8
(
9
), pp.
2781
2790
.
You do not currently have access to this content.