Abstract

This study was aimed at comparing the optimal thermodynamic performance of subcritical and supercritical organic Rankine cycle (ORC) plants for waste heat recovery from ship engines. The technical impacts of adopting a supercritical ORC scheme relative to the usual subcritical one have not been explicitly reported in the literature for heat recovery in ship engines, hence this study. The fluids R245fa, R134a, and R600a were employed for analysis due to their versatility in real systems. The ORC plants were modeled and optimized in matlab using established zero-dimensional models to satisfy the first law mass and energy balances. Results showed that introducing a recuperator would increase ORC performance. For the R600a which exhibited the best performance among the three working fluids, a net power output of 488.3 kW was obtained for the subcritical ORC without a recuperator (SYS A) and 543.7 kW for the one with a recuperator (SYS B). Furthermore, a switch to a supercritical ORC configuration increased the net power by about 29% for R134a and 10% for R600a, and increased the thermal efficiency by about 2.2 percentage points for R134a and 0.5 percentage points for R600a, referencing the supercritical configuration without a recuperator (SYS C) and SYS A.

References

1.
Buonomano
,
A.
,
Barone
,
G.
, and
Forzano
,
C.
,
2022
, “
Advanced Energy Technologies, Methods, and Policies to Support the Sustainable Development of Energy, Water and Environment Systems
,”
Energy Rep.
,
8
, pp.
4844
4853
.
2.
Hanus
,
N.
,
Wong-Parodi
,
G.
,
Hoyos
,
L.
, and
Rauch
,
M.
,
2018
, “
Framing Clean Energy Campaigns to Promote Civic Engagement Among Parents
,”
Environ. Res. Lett.
,
13
(
3
), p.
034021
.
3.
Kotcher
,
J.
,
Maibach
,
E.
, and
Choi
,
W. T.
,
2019
, “
Fossil Fuels Are Harming Our Brains: Identifying Key Messages About the Health Effects of Air Pollution From Fossil Fuels
,”
BMC Public Health
,
19
(
1
), pp.
1
12
.
4.
Nandhini
,
R.
,
Sivaprakash
,
B.
, and
Rajamohan
,
N.
,
2022
, “
Waste Heat Recovery at Low Temperature From Heat Pumps, Power Cycles and Integrated Systems—Review on System Performance and Environmental Perspectives
,”
Sustain. Energy Technol. Assess.
,
52
(
PB
), p.
102214
.
5.
Zhao
,
X.
,
Fu
,
L.
,
Sun
,
T.
,
Wang
,
J. Y.
, and
Wang
,
X. Y.
,
2017
, “
The Recovery of Waste Heat of Flue Gas From Gas Boilers
,”
Sci. Technol. Built Environ.
,
23
(
3
), pp.
490
499
.
6.
Tartière
,
T.
, and
Astolfi
,
M.
,
2017
, “
A World Overview of the Organic Rankine Cycle Market
,”
Energy Procedia
,
129
, pp.
2
9
.
7.
Woodhead Publishing Series in Energy: Number 107
,
2016
,
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
,
Woodhead Publishing
,
Duxford
.
8.
Santos
,
J. J. C. S.
,
Palacio
,
J. C. E.
,
Reyes
,
A. M. M.
,
Carvalho
,
M.
,
Freire
,
A. J. R.
, and
Barone
,
M. A.
,
2018
,
Advances in Renewable Energies and Power Technologies
, I. Yahyaoui, ed., Vol.
1
,
Elsevier Inc.
,
New York
, pp.
373
402
.
9.
Oyekale
,
J.
,
Heberle
,
F.
,
Petrollese
,
M.
,
Brüggemann
,
D.
, and
Cau
,
G.
,
2019
, “
Biomass Retrofit for Existing Solar Organic Rankine Cycle Power Plants: Conceptual Hybridization Strategy and Techno-Economic Assessment
,”
Energy Convers. Manage.
,
196
, pp.
831
845
.
10.
Loni
,
R.
,
Mahian
,
O.
,
Najafi
,
G.
,
Sahin
,
A. Z.
,
Rajaee
,
F.
,
Kasaeian
,
A.
,
Mehrpooya
,
M.
,
Bellos
,
E.
, and
le Roux
,
W. G.
,
2021
, “
A Critical Review of Power Generation Using Geothermal-Driven Organic Rankine Cycle
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101028
.
11.
Mahmoudi
,
A.
,
Fazli
,
M.
, and
Morad
,
M. R.
,
2018
, “
A Recent Review of Waste Heat Recovery by Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
143
, pp.
660
675
.
12.
Wang
,
H.
,
Xu
,
J.
,
Yang
,
X.
,
Miao
,
Z.
, and
Yu
,
C.
,
2015
, “
Organic Rankine Cycle Saves Energy and Reduces Gas Emissions for Cement Production
,”
Energy
,
86
, pp.
59
73
.
13.
Andreasen
,
J. G.
,
Meroni
,
A.
, and
Haglind
,
F.
,
2017
, “
A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships
,”
Energies
,
10
(
4
), pp.
1
23
.
14.
Lion
,
S.
,
Vlaskos
,
I.
, and
Taccani
,
R.
,
2020
, “
A Review of Emissions Reduction Technologies for Low and Medium Speed Marine Diesel Engines and Their Potential for Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112553
.
15.
Lion
,
S.
,
Taccani
,
R.
,
Vlaskos
,
I.
,
Scrocco
,
P.
,
Vouvakos
,
X.
, and
Kaiktsis
,
L.
,
2019
, “
Thermodynamic Analysis of Waste Heat Recovery Using Organic Rankine Cycle (ORC) for a Two-Stroke Low Speed Marine Diesel Engine in IMO Tier II and Tier III Operation
,”
Energy
,
183
, pp.
48
60
.
16.
Larsen
,
U.
,
Sigthorsson
,
O.
, and
Haglind
,
F.
,
2014
, “
A Comparison of Advanced Heat Recovery Power Cycles in a Combined Cycle for Large Ships
,”
Energy
,
74
(
C
), pp.
260
268
.
17.
Zhang
,
X.
,
Cao
,
M.
,
He
,
M.
, and
Wang
,
J.
,
2022
, “
Thermodynamic and Economic Studies of a Combined Cycle for Waste Heat Recovery of Marine Diesel Engine
,”
J. Therm. Sci.
,
31
(
2
), pp.
417
435
.
18.
Bui
,
V. T.
,
Le
,
T. H.
,
Pham
,
V. V.
, and
Nguyen
,
X. P.
,
2021
, “
A Study Evaluating the Ability to Recover Cooling Water Waste Heat Using Organic Rankine Cycle on Marine Engines
,”
J. Mech. Eng. Res. Dev.
,
44
(
4
), pp.
19
25
.
19.
Zhar
,
R.
,
Allouhi
,
A.
,
Jamil
,
A.
, and
Lahrech
,
K.
,
2021
, “
A Comparative Study and Sensitivity Analysis of Different ORC Configurations for Waste Heat Recovery
,”
Case Stud. Therm. Eng.
,
28
, p.
101608
.
20.
Yun
,
E.
,
Park
,
H.
,
Yoon
,
S. Y.
, and
Kim
,
K. C.
,
2015
, “
Dual Parallel Organic Rankine Cycle (ORC) System for High Efficiency Waste Heat Recovery in Marine Application
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2509
2515
.
21.
Dai
,
X.
,
Shi
,
L.
, and
Qian
,
W.
,
2019
, “
Review of the Working Fluid Thermal Stability for Organic Rankine Cycles
,”
J. Therm. Sci.
,
28
(
4
), pp.
597
607
.
22.
Chen
,
H.
,
Wang
,
Z.
,
Jiang
,
Y.
,
Yu
,
S.
,
Han
,
F.
, and
Ji
,
Y.
,
2021
, “
Study on Working Medium Selection of High and Low Temperature Coupled ORC Scheme for Waste Heat Recovery of Dual-Fuel Ship Engine
,”
2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)
,
Chengdu, China
,
Aug. 1–4
, pp.
369
374
.
23.
Gürgen
,
S.
, and
Altin
,
İ
,
2022
, “
Novel Decision-Making Strategy for Working Fluid Selection in Organic Rankine Cycle: A Case Study for Waste Heat Recovery of a Marine Diesel Engine
,”
Energy
,
252
, p.
124023
.
24.
Ge
,
Y.
,
Han
,
J.
, and
Zhu
,
X.
,
2022
, “
Performance Analysis and Multi-objective Optimization of Two Organic Rankine Cycles With Different Fluids for Low Grade Waste Heat Recovery
,”
J. Therm. Sci.
,
31
(
3
), pp.
650
662
.
25.
Lümmen
,
N.
,
Nygård
,
E.
,
Koch
,
P. E.
, and
Nerheim
,
L. M.
,
2018
, “
Comparison of Organic Rankine Cycle Concepts for Recovering Waste Heat in a Hybrid Powertrain on a Fast Passenger Ferry
,”
Energy Convers. Manage.
,
163
, pp.
371
383
.
26.
Lei
,
B.
,
Zhang
,
C.
,
Zhang
,
Y.
,
Wu
,
Y.
,
Wang
,
W.
, and
Ma
,
C.
,
2021
, “
A Theoretical Criterion for Evaluating the Thermodynamic Effectiveness of Regenerators in Organic Rankine Cycle Systems
,”
J. Therm. Sci.
,
30
(
6
), pp.
2027
2036
.
27.
Liu
,
X.
,
Quang Nguyen
,
M.
, and
He
,
M.
,
2020
, “
Performance Analysis and Optimization of an Electricity-Cooling Cogeneration System for Waste Heat Recovery of Marine Engine
,”
Energy Convers. Manage.
,
214
, p.
112887
.
28.
Mondejar
,
M. E.
,
Ahlgren
,
F.
,
Thern
,
M.
, and
Genrup
,
M.
,
2017
, “
Quasi-Steady State Simulation of an Organic Rankine Cycle for Waste Heat Recovery in a Passenger Vessel
,”
Appl. Energy
,
185
(
Part 2
), pp.
1324
1335
.
29.
Ng
,
C. W.
,
Tam
,
I. C. K.
, and
Wu
,
D.
,
2019
, “
System Modelling of Organic Rankine Cycle for Waste Energy Recovery System in Marine Applications
,”
Energy Procedia
,
158
, pp.
1955
1961
.
30.
Pallis
,
P.
,
Varvagiannis
,
E.
,
Braimakis
,
K.
,
Roumpedakis
,
T.
,
Leontaritis
,
A. D.
, and
Karellas
,
S.
,
2021
, “
Development, Experimental Testing and Techno-Economic Assessment of a Fully Automated Marine Organic Rankine Cycle Prototype for Jacket Cooling Water Heat Recovery
,”
Energy
,
228
, p.
120596
.
31.
Yang
,
M. H.
,
2018
, “
Payback Period Investigation of the Organic Rankine Cycle With Mixed Working Fluids to Recover Waste Heat From the Exhaust Gas of a Large Marine Diesel Engine
,”
Energy Convers. Manage.
,
162
(
142
), pp.
189
202
.
32.
Yang
,
M. H.
, and
Yeh
,
R. H.
,
2015
, “
Thermodynamic and Economic Performances Optimization of an Organic Rankine Cycle System Utilizing Exhaust Gas of a Large Marine Diesel Engine
,”
Appl. Energy
,
149
, pp.
1
12
.
33.
Sellers
,
C.
,
2017
, “
Field Operation of a 125 kW ORC With Ship Engine Jacket Water
,”
Energy Procedia
,
129
, pp.
495
502
.
34.
Wang
,
Z.
,
Hu
,
Y.
, and
Xia
,
X.
,
2021
, “
Comparison of Conventional and Advanced Exergy Analysis for Dual-Loop Organic Rankine Cycle Used in Engine Waste Heat Recovery
,”
J. Therm. Sci.
,
30
(
1
), pp.
177
190
.
35.
Koroglu
,
T.
, and
Sogut
,
O. S.
,
2017
, “
Advanced Exergoeconomic Analysis of Organic Rankine Cycle Waste Heat Recovery System of a Marine Power Plant
,”
Int. J. Thermodyn.
,
20
(
3
), pp.
140
151
.
36.
Özdemir
,
E.
, and
Kilic
,
M.
,
2018
, “
Thermodynamic Analysis of Basic and Regenerative Organic Rankine Cycles Using Dry Fluids From Waste Heat Recovery
,”
J. Therm. Eng.
,
4
(
5
), pp.
2381
2393
.
37.
Hijriawan
,
M.
,
Pambudi
,
N. A.
,
Wijayanto
,
D. S.
,
Biddinika
,
M. K.
, and
Saw
,
L. H.
,
2022
, “
Experimental Analysis of R134a Working Fluid on Organic Rankine Cycle (ORC) Systems With Scroll-Expander
,”
Eng. Sci. Technol. Int. J.
,
29
, p.
101036
.
38.
Bu
,
S.
,
Yang
,
X.
,
Li
,
W.
,
Su
,
C.
,
Dai
,
W.
,
Wang
,
X.
,
Tang
,
M.
,
Ji
,
Z.
, and
Tang
,
J.
,
2022
, “
Comprehensive Performance Analysis and Optimization of Novel SCR-ORC System for Condensation Heat Recovery
,”
Appl. Therm. Eng.
,
201
(
PB
), p.
117825
.
39.
Raabe
,
G.
,
2016
, “
Molecular Simulation Studies in Hydrofluoroolefine (HFO) Working Fluids and Their Blends
,”
Sci. Technol. Built Environ.
,
22
(
8
), pp.
1077
1089
.
You do not currently have access to this content.