Abstract

An experimental study was completed to quantify heat transfer enhancement, pressure loss, and crossflow effect within a channel of inline impinging jets. The jet diameter is 5.08 mm; the jet-to-jet spacings in the streamwise and spanwise directions are fixed at x/d = 11.1 and y/d = 5.9, respectively. The effect of jet-to-target surface spacing was considered with z/d = 3 and 6. For both jet-to-target surface spacings, smooth, short pin-finned, and long pin-finned target surfaces were investigated. Both roughened surfaces have a staggered array of 120 copper pin-fins. The pin-to-jet diameter ratio is fixed at D/d = 0.94. The pin height-to-jet diameter ratio for the short and long pins are H1/d = 1.5 and H2/d = 2.75, respectively. Regionally averaged heat transfer coefficient distributions were measured on the target surface, and these distributions were coupled with pressure measurements through the array. The heat transfer augmentation and pressure penalty were investigated over a range of jet Reynolds numbers (10k–70k). The results show high discharge coefficients for all the cases. The channels with the small jet-to-target surface spacing experience double the crossflow effect of the large spacing channels. The addition of surface roughness showed a negligible effect on the crossflow. The best heat transfer performance was observed in the narrow impingement channel with the long pins.

References

1.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
144
.
2.
Goldstein
,
R.
,
Behbahani
,
A.
, and
Heppelmann
,
K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.
3.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
2
), pp.
337
342
.
4.
Attalla
,
M.
,
2005
, “
Experimental Investigation of Heat Transfer Characteristics Form Arrays of Free Impinging Circular Jets and Hole Channels
,”
Ph.D. thesis
,
Uni- Magdeburg, Germany
.
5.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1996
, “
Detailed Heat Transfer Coefficient Distributions Under an Array of Inclined Impinging Jets Using a Transient Liquid Crystal Technique
,”
9th International Symposium on Transport Phenomena in Thermal Fluids Engineering (ISTP-9)
,
Singapore
,
June 25–28
.
6.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
ASME J. Eng. Power
,
105
(
2
), pp.
296
304
.
7.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
8.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
122202
.
9.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets
,”
Proceedings of 2012 ASME Summer Heat Transfer Conference
,
Puerto Rico
,
July 8–12
.
10.
Jordan
,
C. N.
,
Elston
,
C. A.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Leading Edge Impingement With Racetrack-Shaped Jets and Varying Inlet Supply Conditions
,”
Proceedings of 2013 ASME International Gas Turbine Institute Turbo Expo
,
San Antonio, TX
,
June 3–7
.
11.
Carcasci
,
C.
,
Tarchi
,
B.
, and
Ohlendorf
,
N.
,
2014
, “
Experimental Investigation of a Leading Edge Cooling System With Optimized Inclined Racetrack Holes
,”
Proceedings of 2014 ASME International Gas Turbine Institute
,
Dusseldrof, Germany
,
June 16–20
, ASME Paper No. GT2014-26219.
12.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J.-C.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
6
), p.
062201
.
13.
Wang
,
N.
,
Zhang
,
M.
,
Alsaleem
,
S.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2019
, “
Turbine Blade Leading Edge Impingement Cooling From Normal or Tangential Jets With Crossflow Effect
,”
Front. Heat Mass Transfer
,
13
(
9
).
14.
Zhang
,
M.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2019
, “
Internal Heat Transfer of Film-Cooled Leading-Edge Model With Normal and Tangential Impinging Jets
,”
Int. J. Heat Mass Transfer
,
139
(
11
), pp.
193
204
.
15.
Zhang
,
M.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2019
, “
Overall Effectiveness of Film-Cooled Leading-Edge Model With Normal and Tangential Impinging Jets
,”
Int. J. Heat Mass Transfer
,
139
(
2
), pp.
577
587
.
16.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor and Francis
,
New York
.
17.
Trabold
,
T.
, and
Obot
,
N.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part II—Effects of Crossflow in the Presence of Roughness Elements
,”
ASME J. Turbomach.
,
109
(
4
), pp.
594
601
.
18.
Haiping
,
C.
,
Dalin
,
Z.
, and
Taiping
,
H.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: the Effect of the Relative Position of the Jet Hole to the Ribs
,”
The 1997 International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 2–5
.
19.
Rallabandi
,
A. P.
,
Rhee
,
D.-H.
,
Gao
,
Z.
, and
Han
,
J.-C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4663
4671
.
20.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME J. Turbomach.
,
127
(
2
), pp.
287
296
.
21.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
161
173
.
22.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.
23.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2014
, “
Impingement Heat Transfer From Jet Arrays on Turbulent Target Walls at Large Reynolds Numbers
,”
AMSE Trans. J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021003
.
24.
Buzzard
,
W.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2016
, “
Influences of Target Surface Roughness on Impingement Jet Array Heat Transfer—Part 1: Effects of Roughness Pattern, Roughness Height, and Reynolds Number
,”
Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
25.
Rao
,
Y.
,
2018
, “
Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
7
), p.
072201
.
26.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
27.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
,
CRC Press
,
Boca Raton, FL
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
29.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
30.
Da Soghe
,
R.
,
Bianchini
,
C.
,
D’Errico
,
J.
,
Fox
,
M.
, and
Tarchi
,
L.
,
2019
, “
Effect of Temperature Ratio on Jet Impingement Heat Transfer in Active Clearance Control Systems
,”
ASME J. Turbomach.
,
141
(
8
), p.
081009
.
You do not currently have access to this content.