Abstract

The integration of energy storage systems (ESS) on a large scale is becoming essential to mitigate intermittency issues in power supply from offshore wind farms. This paper deals with an offshore hydro-pneumatic energy storage (HPES) system comprising of a subsea accumulator pre-charged with a compressed gas. The paper applies a simplified thermodynamic model to investigate the potential increase in the energy storage density of the proposed HPES system by replacing air with carbon dioxide (CO2) that is able to undergo a phase change (gas-liquid-gas) during the storage cycle when limiting the peak operating pressure below the critical point. The study is based on a numerical model for simulating the thermodynamics of the entire storage cycle. A sensitivity study is conducted to examine the influence of main operational parameters, primarily the seawater temperature, peak working pressure, and sea depth, on the storage density of the HPES system operating with a dual phase fluid. It is shown that the storage density of HPES accumulators can be increased substantially by using CO2 in lieu of air. The increase in density is found to depend considerably on the seawater temperature and sea depth.

References

1.
Liu
,
H.
,
He
,
Q.
,
Borgia
,
A.
,
Pan
,
L.
, and
Oldenburg
,
C. M.
,
2016
, “
Thermodynamic Analysis of a Compressed Carbon Dioxide Energy Storage System Using Two Saline Aquifers at Different Depths as Storage Reservoirs
,”
Energy Convers. Manage.
,
127
, pp.
149
159
.
2.
Lund
,
H.
, and
Salgi
,
G.
,
2009
, “
The Role of Compressed Air Energy Storage (CAES) in Future Sustainable Energy Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1172
1179
.
3.
Buhagiar
,
D.
,
Sant
,
T.
, and
Farrugia
,
R. N.
,
2019
, “
Marine Testing of Small-Scale Prototype of the FLASC Offshore Energy Storage System
”,
Offshore Energy and Storage Summit
,
Brest, France
.
4.
Aneke
,
M.
, and
Wang
,
M.
,
2016
, “
Energy Storage Technologies and Real Life Applications—A State of the Art Review
,”
Appl. Energy
,
179
, pp.
350
377
.
5.
Sabihuddin
,
S.
,
Kiprakis
,
A. E.
, and
Mueller
,
M.
,
2014
, “
A Numerical and Graphical Review of Energy Storage Technologies
,”
Energies
,
8
(
1
), pp.
172
216
.
6.
Sánchez Muñoz
,
A.
,
Garcia
,
M.
, and
Gerlich
,
M.
,
2016
, “
Overview of Storage Technologies
,” Technical Report No. Sensible, Grant Agreement No. 645963.
7.
Rodriguez
,
E. M. G.
,
Godina
,
R.
,
Santos
,
S. F.
,
Bizuayehu
,
A. W.
,
Contreras
,
J.
, and
Catalao
,
J. P. S.
,
2014
, “
Energy Storage Systems Supporting Increased Penetration of Renewables in Islanded Systems
,”
Energy
,
75
, pp.
265
280
.
8.
Suberu
,
M. Y.
,
Mustafa
,
M. W.
, and
Bashir
,
N.
,
2014
, “
Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency
,”
Renew. Sustain. Energy Rev.
,
35
, pp.
499
514
.
9.
Diaz-Gonzalez
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Villafafila-Robles
,
R.
,
2012
, “
A Review of Energy Storage Technologies for Wind Power Applications
,”
Renew. Sustain. Energy Rev.
,
16
, pp.
2157
2171
.
10.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Li
,
K.
,
Sun
,
J.
,
Kong
,
D.
, and
Chen
,
C.
,
2015
, “
Study of the Fire Behaviour of High-Energy Lithium-Ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
, pp.
80
89
.
11.
Lecocq
,
A.
,
Eshetu
,
G. G.
,
Grugeon
,
S.
,
Martin
,
N.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2016
, “
Scenario-Based Prediction of Li-Ion Batteries Fire-Induced Toxicity
,”
J. Power Sources
,
316
, pp.
197
206
.
12.
Heelan
,
J.
,
Gratz
,
E.
,
Zheng
,
Z.
,
Wang
,
Q.
,
Chen
,
M.
,
Apelian
,
D.
, and
Wang
,
Y.
,
2016
, “
Current and Prospective Li-Ion Battery Recycling and Recovery Processes
,”
JOM
,
68
(
10
), pp.
2632
2632
.
13.
Barnhart
,
C. J.
,
Dale
,
M.
,
Brandt
,
A. R.
, and
Bensonab
,
S. M.
,
2013
, “
The Energetic Implications of Curtailing Versus Storing Solar- and Wind-Generated Electricity
,”
Energy Environ. Sci.
,
6
(
10
), pp.
2804
2810
.
14.
Wang
,
Z.
,
Carriveau
,
R.
,
Ting
,
D. S. K.
,
Xiong
,
W.
, and
Wang
,
Z.
,
2019
, “
A Review of Marine Renewable Energy Storage
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6108
6150
.
15.
Buhagiar
,
D.
,
Sant
,
T.
, and
Farrugia
,
R. N.
,
2021
, “
Hydro-Pneumatic Energy Storage
,”
Encylcopedia of Energy Storage
,
2
, pp.
218
235
.
16.
Buhagiar
,
D.
,
Sant
,
T.
,
Farrugia
,
R. N.
,
Aquilina
,
L.
,
Farrugia
,
D.
, and
Strati
,
F. M.
,
2019
, “
Small-Scale Experimental Testing of a Novel Marine Floating Platform With Integrated Hydro-Pneumatic Energy Storage
,”
J. Energy Storage
,
24
, p.
100774
.
17.
Olympios
,
A. V.
,
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Tafone
,
A.
,
Romagnoli
,
A.
,
Li
,
Y.
,
Ding
,
Y.
,
Steinmann
,
W. D.
,
Wang
,
L.
, and
Chen
,
H.
, “
Progress and Prospects of Thermo-Mechanical Energy Storage—A Critical Review
,”
Prog. Energy
,
3
(
2
), p.
022001
.
18.
Odukomaiya
,
A.
,
Abu-Heiba
,
A.
,
Graham
,
S.
, and
Momen
,
A. M.
,
2018
, “
Experimental and Analytical Evaluation of a Hydro-Pneumatic Compressed-Air Ground-Level Integrated Diverse Energy Storage (GLIDES) System
,”
Appl. Energy
,
221
, pp.
75
85
.
19.
FLASC
.
Renewable Energy Storage—FLASC, FLASC
. [Online], https://www.offshoreenergystorage.com/, Accessed December 2, 2021.
20.
Abuheiba
,
A.
,
Ally
,
M.
,
Smith
,
B.
, and
Momen
,
A.
,
2020
, “
Increasing Compressed Gas Energy Storage Density Using CO2–N2 Gas Mixture
,”
Energies
,
13
(
10
), pp.
1
13
.
21.
Download Mollier Charts
”, Chemicalogic.com,
2021
. [Online], http://www.chemicalogic.com/Pages/DownloadMollierCharts.html, Accessed December 14, 2021.
22.
Cutajar
,
C.
,
Sant
,
T.
,
Farrugia
,
R. N.
, and
Buhagiar
,
D.
,
2021
, “
A Software Tool for the Design and Operational Analysis of Pressure Vessels Used in Offshore Hydro-Pneumatic Energy Storage
,”
J. Energy Storage
,
40
, p.
102750
.
23.
Thermophysical Properties of Fluid Systems
”, Webbook.nist.gov,
2021
. [Online], https://webbook.nist.gov/chemistry/fluid/, Accessed December 14, 2021.
24.
Welcome to Python.org
”, Python.org. [Online], https://www.python.org/. Accessed December 16, 2021.
25.
Hibbeler
,
R. C.
,
2014
,
Mechanics of Materials
, 9th ed.,
Pearson Prentice Hall
,
Singapore, Australia
, pp.
524
539
.
26.
CO2 Tables Calculator
”, Carbon-dioxide-properties.com. [Online], https://www.carbon-dioxide-properties.com/CO2TablesWeb.aspx, Accessed December 14, 2021.
27.
Garver
,
B.
,
Rutherford
,
D.
, and
Zheng
,
S.
,
2020
,
CO2 Emissions From Commercial Aviation
,
International Council on Clean Transportation
,
Washington, DC
, pp.
12
13
.
You do not currently have access to this content.