Abstract

A solar absorption cooling system consisting of a flat plate collector, thermal energy storage tank, and absorption chiller is analyzed in this work. A dimensionless model is developed from the energy balance on each component and the chiller’s characteristic performance curves. The model is used to determine the interaction and influence of different parameters such as tank size, solar collector area, chiller size, cooling load, cooling temperature, heat loss, and mass flow rates on the performance. From the analysis, smaller solar collector areas are required for lower cooling loads and smaller tank volumes. A specific cooling load of 1 × 10−5 will require a specific solar collector area between two and six times larger, depending on the initial tank temperature, than the area required for a baseline system that considers typical commercial design and operation parameters. A similar behavior was observed for the specific tank volume. For the baseline system, the minimum specific area of the collector of 9.57 is achieved for an initial tank temperature of 1.19. For a cooling load of 1 × 10−5, the optimum initial tank temperature will be 1.11 that results in a minimum specific solar collector area of 25.26. A specific tank volume of 4 × 10−4 will also have an optimum initial tank temperature of 1.11 that minimizes the specific solar collector area to a value of 28.18. The approach and analysis in this work can be used to determine design parameters for solar absorption cooling systems based on a proper relation among system’s dimensions to achieve optimum operation.

References

1.
Ajib
,
S.
, and
Alahmer
,
A.
,
2019
, “Solar Cooling Technologies,”
Energy Conversion–Current Technologies and Future Trends
,
I. H.
Al-Bahadly
, ed.,
IntechOpen
,
London, UK
.
2.
Ayou
,
D. S.
, and
Coronas
,
A.
,
2020
, “
New Developments and Progress in Absorption Chillers for Solar Cooling Applications
,”
Appl. Sci.
,
10
(
12
), p.
4073
.
3.
Gilani
,
H. A.
, and
Hoseinzadeh
,
S.
,
2021
, “
Techno-Economic Study of Compound Parabolic Collector in Solar Water Heating System in the Northern Hemisphere
,”
Appl. Therm. Eng.
,
190
, p.
116756
.
4.
Osorio
,
J. D.
,
Zea
,
S.
,
Rivera-Alvarez
,
A.
,
Patiño-Jaramillo
,
G. A.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2023
, “
Low-Temperature Solar Thermal-Power Systems for Residential Electricity Supply Under Various Seasonal and Climate Conditions
,”
Appl. Therm. Eng.
,
232
, p.
120905
.
5.
Bouguetaia
,
N.
,
Bellel
,
N.
, and
Lekbir
,
A.
,
2023
, “
Absorption Chiller System Driven by the Solar Hybrid System: Case Study in the Algeria Weather Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
061009
.
6.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
, and
Ani
,
F. N.
,
2020
, “
A Detailed Parametric Study of a Solar Driven Double-Effect Absorption Chiller Under Various Solar Radiation Data
,”
J. Clean. Prod.
,
251
, p.
119750
.
7.
Cao
,
Y.
,
Mohamed
,
A. M.
,
Dahari
,
M.
,
Delpisheh
,
M.
, and
Haghghi
,
M. A.
,
2020
, “
Performance Enhancement and Multi-Objective Optimization of a Solar-Driven Setup With Storage Process Using an Innovative Modification
,”
J. Energy Storage
,
32
, p.
101956
.
8.
Alsagri
,
A. S.
,
Alrobaian
,
A. A.
, and
Almohaimeed
,
S. A.
,
2020
, “
Concentrating Solar Collectors in Absorption and Adsorption Cooling Cycles: An Overview
,”
Energy Convers. Manage.
,
223
, p.
113420
.
9.
Nikbakhti
,
R.
,
Wang
,
X.
,
Hussein
,
A. K.
, and
Iranmanesh
,
A.
,
2020
, “
Absorption Cooling Systems—Review of Various Techniques for Energy Performance Enhancement
,”
Alex. Eng. J.
,
59
(
2
), pp.
707
738
.
10.
Lizarte
,
R.
, and
Marcos
,
J.
,
2016
, “
COP Optimisation of a Triple-Effect H2O/LiBr Absorption Cycle Under Off-Design Conditions
,”
Appl. Therm. Eng.
,
99
, pp.
195
205
.
11.
Konwar
,
D.
,
Gogoi
,
T.
, and
Das
,
A.
,
2019
, “
Multi-objective Optimization of Double Effect Series and Parallel Flow Water-Lithium Chloride and Water-Lithium Bromide Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
180
, pp.
425
441
.
12.
Cai
,
D.
,
Jiang
,
J.
,
He
,
G.
,
Li
,
K.
,
Niu
,
L.
, and
Xiao
,
R.
,
2016
, “
Experimental Evaluation on Thermal Performance of an Air-Cooled Absorption Refrigeration Cycle With NH3-LiNO3 and NH3-NaSCN Refrigerant Solutions
,”
Energy Convers. Manage
,
120
, pp.
32
43
.
13.
Sozen
,
A.
,
Ozbas
,
E.
,
Menlik
,
T.
,
Cakir
,
M. T.
,
Guru
,
M.
, and
Boran
,
K.
,
2014
, “
Improving the Thermal Performance of Diffusion Absorption Refrigeration System With Alumina Nanofluids: An Experimental Study
,”
Int. J. Refrig.
,
44
, pp.
73
80
.
14.
Jiang
,
W.
,
Li
,
S.
,
Yang
,
L.
, and
Du
,
K.
,
2019
, “
Experimental Investigation on Performance of Ammonia Absorption Refrigeration System With TiO2 Nanofluid
,”
Int. J. Refrig.
,
98
, pp.
80
88
.
15.
Narayanan
,
R.
,
Harilal
,
G. K.
, and
Golder
,
S.
,
2021
, “
Feasibility Study on the Solar Absorption Cooling System for a Residential Complex in the Australian Subtropical Region
,”
Case Stud. Therm. Eng.
,
27
, p.
101202
.
16.
Qadeer
,
A.
,
Hussain
,
S.
,
Ali
,
M.
, and
Khan
,
M.
,
2021
, “
Experimental Investigations of a Small-Scale Solar-Assisted Absorption Cooling System
,”
Heat Transfer
,
50
(
3
), pp.
2686
2708
.
17.
Wu
,
W.
, and
Leung
,
M.
,
2020
, “
Transient and Seasonal Performance Evaluation of a Novel Flexible Heat Pump for Solar Cooling
,”
Energy Convers. Manage.
,
223
, p.
113269
.
18.
Nikbakhti
,
R.
, and
Iranmanesh
,
A.
,
2021
, “
Potential Application of a Novel Integrated Adsorption—Absorption Refrigeration System Powered With Solar Energy in Australia
,”
Appl. Therm. Eng.
,
194
, p.
117114
.
19.
Bellos
,
E.
,
Chatzovoulos
,
I.
, and
Tzivanidis
,
C.
,
2021
, “
Yearly Investigation of a Solar-Driven Absorption Refrigeration System With Ammonia-Water Absorption Pair
,”
Ther. Sci. Eng. Prog.
,
23
, p.
100885
.
20.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Saat
,
A.
,
Rehman
,
S.
, and
Ani
,
F. N.
,
2020
, “
Charging and Discharging Characteristics of Absorption Energy Storage Integrated With a Solar Driven Double-Effect Absorption Chiller for Air Conditioning Applications
,”
J. Energy Storage
,
29
, p.
101374
.
21.
Toprak
,
K.
, and
Ouedraogo
,
K. E.
,
2020
, “
Effect of Storage Tanks on Solar-Powered Absorption Chiller Cooling System Performance
,”
Int. J. Energy Res.
,
10
(
1
), pp.
175
182
.
22.
Chen
,
L.
,
Zheng
,
T.
,
Sun
,
F.
, and
Wu
,
C.
,
2006
, “
Irreversible Four-Temperature-Level Absorption Refrigerator
,”
Sol. Energy
,
80
(
3
), pp.
347
360
.
23.
Qin
,
X. Y.
,
Chen
,
L. G.
, and
Sun
,
F. R.
,
2010
, “
Thermodynamic Modelling and Performance of Variable-Temperature Heat Reservoir Absorption Refrigeration Cycle
,”
Int. J. Exergy
,
7
(
4
), pp.
521
534
.
24.
Osorio
,
J. D.
,
Rivera-Álvarez
,
A.
,
Girurugwiro
,
P.
,
Yang
,
S.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2017
, “
Integration of Transparent Insulation Materials Into Solar Collector Devices
,”
Sol. Energy
,
147
, pp.
8
21
.
25.
Iqbal
,
M.
,
1983
,
An Introduction to Solar Radiation
,
Academic Press
,
Toronto, Canada
.
26.
Sung
,
T.
,
Yoon
,
S. Y.
, and
Kim
,
K. C.
,
2015
, “
A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle
,”
Energies
,
8
(
7
), pp.
7058
7069
.
27.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
28.
Ajib
,
S.
, and
Alahmer
,
A.
,
2020
, “
Solar Cooling Technologies: State of Art and Perspectives
,”
Energy Convers. Manage.
,
214
, pp.
1
17
.
29.
Ng
,
K.
,
Chua
,
H.
, and
Han
,
Q.
,
1997
, “
On the Modeling of Absorption Chillers With External and Internal Irreversibilities
,”
Appl. Therm. Eng.
,
17
(
5
), pp.
413
425
.
30.
Chua
,
H.
,
Toh
,
H.
,
Malek
,
A.
,
Ng
,
K.
, and
Srinivasan
,
K.
,
2000
, “
A General Thermodynamic Framework for Understanding the Behaviour of Absorption Chillers
,”
Int. J. Refrig.
,
23
(
7
), pp.
491
507
.
31.
Mehrabian
,
M. A.
, and
Shahbeik
,
A. E.
,
2005
, “
Thermodynamic Modeling of a Single-Effect LiBr-H2O Absorption Refrigeration Cycle
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
219
(
3
), pp.
261
273
.
32.
Marc
,
O.
,
Anies
,
G.
,
Lucas
,
F.
, and
Castaing-Lasvignottes
,
J.
,
2012
, “
Assessing Performance and Controlling Operating Conditions of a Solar Driven Absorption Chiller Using Simplified Numerical Models
,”
Sol. Energy
,
86
(
9
), pp.
2231
2239
.
33.
Osorio
,
J. D.
,
Rivera-Álvarez
,
A.
,
Swain
,
M.
, and
Ordonez
,
J. C.
,
2015
, “
Exergy Analysis of Discharging Multi-Tank Thermal Energy Storage Systems With Constant Heat Extraction
,”
Appl. Energy
,
154
, pp.
333
343
.
34.
Jones
,
G.
, and
Wilkinson
,
A.
,
2015
, “Flat Plate Solar Collector Performance Test.”
35.
Hirmiz
,
R.
,
Lightstone
,
M. F.
, and
Cotton
,
J. S.
,
2018
, “
Performance Enhancement of Solar Absorption Cooling Systems Using Thermal Energy Storage With Phase Change Materials
,”
Appl. Energy
,
223
, pp.
11
29
.
36.
Syed
,
A.
,
Izquierdo
,
M.
,
Rodríguez
,
P.
,
Maidment
,
G.
,
Missenden
,
J.
,
Lecuona
,
A.
, and
Tozer
,
R.
,
2005
, “
A Novel Experimental Investigation of a Solar Cooling System in Madrid
,”
Int. J. Refrig.
,
28
(
6
), pp.
859
871
.
37.
Rodríguez Hidalgo
,
M.
,
Rodríguez Aumente
,
P.
,
Izquierdo Millán
,
M.
,
Lecuona Neumann
,
A.
, and
Salgado Mangual
,
R.
,
2008
, “
Energy and Carbon Emission Savings in Spanish Housing Air-Conditioning Using Solar Driven Absorption System
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1734
1744
.
38.
Praene
,
J. P.
,
Marc
,
O.
,
Lucas
,
F.
, and
Miranville
,
F.
,
2011
, “
Simulation and Experimental Investigation of Solar Absorption Cooling System in Reunion Island
,”
Appl. Energy
,
88
(
3
), pp.
831
839
.
39.
Yeung
,
M.
,
Yuen
,
P.
,
Dunn
,
A.
, and
Cornish
,
L.
,
1992
, “
Performance of a Solar-Powered Air Conditioning System in Hong Kong
,”
Sol. Energy
,
48
(
5
), pp.
309
319
.
40.
Balghouthi
,
M.
,
Chahbani
,
M.
, and
Guizani
,
A.
,
2008
, “
Feasibility of Solar Absorption Air Conditioning in Tunisia
,”
Build. Environ.
,
43
(
9
), pp.
1459
1470
.
41.
Rosiek
,
S.
, and
Batlles
,
F.
,
2012
, “
Shallow Geothermal Energy Applied to a Solar-Assisted Air-Conditioning System in Southern Spain: Two-Year Experience
,”
Appl. Energy
,
100
, pp.
267
276
.
42.
Al-Ugla
,
A.
,
El-Shaarawi
,
M.
, and
Said
,
S.
,
2015
, “
Alternative Designs for a 24-Hours Operating Solar-Powered LiBr-Water Absorption Air-Conditioning Technology
,”
Int. J. Refrig.
,
53
, pp.
90
100
.
You do not currently have access to this content.