Abstract

At present, the demand for high cooling capacity Gifford–McMahon (GM) refrigerators is increasing to cool the high-temperature superconducting magnets in cryogenic temperature range. Therefore, it is necessary to enhance the cooling capacity of existing refrigerators, which needs a thorough understanding of related thermodynamic phenomena. In this paper, thermodynamic processes of a GM refrigerator are analyzed and its performance is compared with Carnot cycle, and Brayton cycle with and without work recovery. Subsequently, a mathematical model has been formulated for a pneumatically driven GM refrigerator by applying the fundamental principles of thermodynamics and mechanics. The model computes the influence of geometrical and operating parameters upon its refrigeration performance. Subsequently, the impact of valve opening intervals upon internal thermodynamic and dynamic processes is evaluated. The dynamic characteristics of the displacer motion, transient variation of mass flow, and pressure distribution are studied by the model for different values of idling angles. It is found that an increase in the idling angle of the rotary valve of GM refrigerator reduces its cooling capacity and enhances its specific cooling capacity. An experimental study has also been undertaken to corroborate the mathematical results.

References

1.
Minas
,
C.
, and
Hualde
,
P. M.
,
1992
, “
Dynamic Modelling of a Gifford–McMahon Cryorefrigerator
,”
Cryogenics
,
32
(
7
), pp.
634
639
.
2.
Radebaugh
,
R.
,
2009
, “
Cryocoolers: The State of the Art and Recent Developments
,”
J. Phys.: Condens. Matter
,
21
(
16
), p.
164219
.
3.
Chakravarthy
,
V. S.
,
Shah
,
R. K.
, and
Venkatarathnam
,
G.
,
2011
, “
A Review of Refrigeration Methods in the Temperature Range 4–300 K
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
020801
.
4.
Cao
,
H. S.
, and
Ter Brake
,
H. J. M.
,
2020
, “
Progress in and Outlook for Cryogenic Microcooling
,”
Phys. Rev. Appl.
,
14
(
4
), p.
044044
.
5.
Gifford
,
W. E.
,
1966
, “The Gifford–McMahon Cycle,”
Advances in Cryogenic Engineering
, Vol.
11
,
K. D.
Timmerhaus
, ed.,
Springer
,
Boston, MA
, pp.
152
159
.
6.
Bao
,
Q.
,
Xu
,
M.
, and
Yamada
,
K.
,
2016
, “
Development Status of a High Cooling Capacity Single Stage GM Cryocooler
,”
Proceeding of 19th International Cryocooler Conference
,
San Diego, CA
,
June 20–23
, pp.
291
297
.
7.
Zhi
,
X.
,
Pfotenhauer
,
J. M.
,
Miller
,
F.
, and
Gershtein
,
V.
,
2017
, “
Numerical Study on the Working Performance of a GM Cryocooler With a Mechanically Driven Displacer
,”
Int. J. Heat Mass Transfer
,
115
(
A
), pp.
611
618
.
8.
Lei
,
T.
,
Zuev
,
Y. L.
,
Bao
,
Q.
, and
Xu
,
M.
,
2020
, “
Drive Force Optimization of a Pneumatically-Driven Gifford–McMahon Cryocooler by Numerical Modeling
,”
Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC) 2019
,
Hartford, CT
,
July 21–25, 2019
, pp.
1
8
, IOP Conference Series: Materials Science and Engineering 2020.
9.
Xu
,
M.
, and
Morie
,
T.
,
2012
, “
Numerical Simulation of 4 K GM Cryocooler
,”
Proceeding of 17th International Cryocooler Conference
,
Los Angeles, CA
,
Jul. 9–12
, pp.
253
259
.
10.
Wang
,
C.
,
Hanrahan
,
T.
, and
Cosco
,
J.
,
2018
, “
A Large Single-Stage GM Cryocooler for Operating Temperatures of 13–30 K
,”
Proceedings of 21th International Cryocooler Conference
,
Burlington, VT
,
June 18–21
, pp.
223
29
.
11.
Hao
,
X.
,
Yao
,
S.
, and
Schilling
,
T.
,
2015
, “
Design and Experimental Investigation of the High Efficiency 1.5 W/4.2 K Pneumatic-Drive GM Cryocooler
,”
Cryogenics
,
70
, pp.
28
33
.
12.
Yamada
,
K.
,
2014
, “
Development of a Large Cooling Capacity Single Stage GM Cryocooler
,”
Cryogenics
,
63
, pp.
110
113
.
13.
Wysokinski
,
T.
,
Xu
,
X.
, and
Barclay
,
J.
,
2002
, “
Monolithic Versus Conventional Packed Bed Second Stage Regenerator Evaluation in a Gifford–McMahon Cryocooler
,”
Cryogenics
,
42
(
11
), pp.
691
696
.
14.
Pfotenhauer
,
J. M.
,
Lokken
,
O. D.
, and
Gifford
,
P. E.
,
1997
, “
Performance of a Twin Cold Finger Gifford–McMahon Cryocooler
,”
Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference
,
Kitakyushu, Japan
,
May 20–24, 1996
,
Elsevier
, pp.
363
366
.
15.
Matsubara
,
Y.
,
2006
, “
Cryocooler [1]: Fundamental Review of Cryogenic Refrigerators
,”
TEION KOGAKU (J. Cryo. Soc. Jpn.)
,
41
(
8
), pp.
351
358
.
16.
Matsubara
,
Y.
,
2006
, “
Cryocooler [2]: Fundamental Review of Cryogenic Refrigerators
,”
TEION KOGAKU (J. Cryo. Soc. Jpn.)
,
41
(
10
), pp.
420
427
.
17.
Lavrenchenko
,
G.
, and
Kravchenko
,
M.
,
2019
, “
The Characteristics of a 4 K Gifford–McMahon Cryocooler With a Second Stage-Regenerator Packed With Cenospheres
,”
Low Temp. Phys.
,
45
, pp.
452
464
.
18.
Panda
,
D.
,
Behera
,
S. K.
,
Satapathy
,
A. K.
,
Sahoo
,
R.
, and
Sarangi
,
S.
,
2022
, “
A Comparative Study on Thermodynamic Aspects of a Mechanical Drive and Pneumatic Drive GM Cryocooler
,”
Vacuum
,
199
, p.
110938
.
19.
Panda
,
D.
,
Behera
,
S. K.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2022
, “
Investigations on Thermodynamic Processes of a Novel Pneumatic Drive Asymmetric Gifford–McMahon Cycle Cryorefrigerator
,”
ASME J. Energy Res. Technol.
,
144
(
5
), p.
052104
.
20.
Panda
,
D.
,
Sarangi
,
S. K.
, and
Satapathy
,
A. K.
,
2019
, “
Influence of Characteristics of Flow Control Valves on the Cooling Performance of a GM Cryocooler
,”
Vacuum
,
168
, p.
108836
.
21.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2019
, “
Effect of Valve Opening Shapes on the Performance of a Single-Stage Gifford–McMahon Cryocooler
,”
Eng. Rep.
,
1
(
3
), p.
e12044
.
22.
Xu
,
M.
,
Morie
,
T.
, and
Bao
,
Q.
,
2019
,
Patent Application Granted on August 6, 2019, US Patent Number: US10371417B2
.
23.
Xu
,
M.
, and
Bao
,
Q.
,
2021
,
Filed on Nov. 9, 2020,U.S. Patent Application 17/092,322, Publication Number: US2021/0071767A1
.
24.
Caglayan
,
A.
,
Husain
,
S. M.
,
Ipek
,
M.
,
Aynur
,
T. N.
, and
Cadirci
,
S.
,
2021
, “
Dynamic Modeling and Experimental Validation of a Domestic Refrigeration Cycle
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071007
.
25.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2020
, “
Thermoeconomic Performance Optimization of an Orifice Pulse Tube Refrigerator
,”
Sci. Technol. Built Environ.
,
26
(
4
), pp.
492
510
.
You do not currently have access to this content.