Abstract

The heat transfer characteristics of a mixed convective two-phase flow in an inclined rotating microporous channel kept in a transverse magnetic field are investigated numerically. The counterflow arrangement is assumed within the channel. Slip velocity and asymmetric thermal boundary conditions are assumed. The governing energy equation involves the local thermal non-equilibrium (LTNE) between the two phases. The LTNE implications of the control parameters on the flow field variables and the average Nusselt number, Nu, are highlighted, and pertinent observations are documented. When confined to a few specific cases, the current results are consistent with previous research work. The effect of inclination angle on fluid velocity is determined by the wall temperature difference ratio. According to the findings, for certain values of the wall temperature differential ratio, the velocity increases with the angle; however, it takes on a dual character for other values. The Nusselt number (Nu) is expected to increase with the Biot number, Hartmann number, and rotation parameter, while Nu decreases as the Knudsen number increases. The results also show that as the wall temperature ratio increases, the Nu converges to a common minimum value. This research combines computational fluid dynamics (CFD) simulation and artificial neural network (ANN) analysis. The database was generated from the validated CFD model covering a range of control parameters arising in the system. The multilayer perceptron (MLP) networks were trained using this CFD data set to predict Nu. It is observed that the predicted data given by the ANN model is in good accordance with the estimated values of Nu. The average relative error in Nu's prediction is found to be ±2%.

References

1.
Jeong
,
N.
,
Choi
,
D. H.
, and
Lin
,
C. L.
,
2006
, “
Prediction of Darcy–Forchheimer Drag for Microporous Structures of Complex Geometry Using the Lattice Boltzmann Method
,”
J. Micromech. Microeng.
,
16
(
10
), pp.
2240
2250
.
2.
Yuranov
,
I.
,
Renken
,
A.
, and
Kiwi-Minsker
,
L.
,
2005
, “
Zeolite/Sintered Metal Fibers Composites as Effective Structured Catalyst
,”
Appl. Catal.
,
281
(
1–2
), pp.
55
60
.
3.
Kiwi-Minsker
,
L.
, and
Renken
,
A.
,
2005
, “
Microstructured Reactors for Catalytic Reactions
,”
Catal. Today
,
110
(
1–2
), pp.
2
14
.
4.
Assis
,
O. B. G.
, and
Claro
,
L. C.
,
2003
, “
Immobilized Lysozyme Protein on Fibrous Medium: Preliminary Results for Microfilteration Applications
,”
Electron. J. Biotechnol.
,
6
(
2
), pp.
161
167
.
5.
Brask
,
A.
,
Goranović
,
G.
,
Jensen
,
M. J.
, and
Bruus
,
H.
,
2005
, “
A Novel Electro-osmotic Pump Design for Nonconducting Liquids: Theoretical Analysis of Flow Rate-Pressure Characteristics and Stability
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
883
891
.
6.
Bazant
,
M. Z.
, and
Squires
,
T. M.
,
2004
, “
Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications
,”
Phys. Rev. Lett.
,
92
(
6
), pp.
066101
066104
.
7.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
(
24
), pp.
5822
5832
.
8.
Biddiss
,
E.
,
Erickson
,
D.
, and
Li
,
D. Q.
,
2004
, “
Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows
,”
Anal. Chem.
,
7
(
11
), pp.
3208
3213
.
9.
Wong
,
P. K.
,
Wang
,
J. T.
,
Deval
,
J. H.
, and
Ho
,
C. M.
,
2004
, “
Electrokinetics in Micro Devices for Biotechnology Applications
,”
IEEE/ASME Trans. Mechatron.
,
9
(
2
), pp.
366
376
.
10.
Van Erp
,
R.
,
Soleimanzadeh
,
R.
,
Nela
,
L.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2020
, “
Co-designing Electronics With Microfluidics for More Sustainable Cooling
,”
Nature
,
585
(
7824
), pp.
211
216
.
11.
Wei
,
T.
,
2020
, “
All-In-One Design Integrates Microfluidic Cooling Into Electronic Chips
,”
Nature
,
585
(
7824
), pp.
188
189
.
12.
Fan
,
J. C.
,
Wu
,
H. A.
, and
Wang
,
F. C.
,
2020
, “
Evaporation-Driven Liquid Flow Through Nanochannels
,”
Phys. Fluids
,
32
(
1
), p.
012001
.
13.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small-Scale Micro-channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1039
1051
.
14.
Malashetty
,
M. S.
, and
Leela
,
V.
,
1991
, “
Magnetohydrodynamic Heat Transfer in Two Fluid Flow
,”
Proceedings of the National Heat Transfer Conference
,
India
, Vol. 159, pp.
171
175
.
15.
Malashetty
,
M. S.
, and
Leela
,
V.
,
1992
, “
Magnetohydrodynamic Heat Transfer in Two Phase Flow
,”
Int. J. Eng Sci.
,
30
(
3
), pp.
371
377
.
16.
Malashetty
,
M. S.
,
Umavathi
,
J. C.
, and
Prathap Kumar
,
J.
,
2001
, “
Convective Magnehydrodynamic Two Fluid Flow and Heat Transfer in an Inclined Channel
,”
Heat Mass Transfer
,
37
(
2–3
), pp.
259
264
.
17.
Liu
,
J.
,
Ju
,
Y.
,
Zhang
,
Y.
, and
Gong
,
W.
,
2019
, “
Preferential Paths of Air-Water Two-Phase Flow in Porous Structures With Special Consideration of Channel Thickness Effects
,”
Sci. Rep.
,
9
(
1
), p.
16204
.
18.
Wakale
,
A. B.
,
Venkatasubbaiah
,
K.
, and
Sahu
,
K. C.
,
2015
, “
A Parametric Study of Buoyancy-Driven Flow of Two-Immiscible Fluids in a Differentially Heated Inclined Channel
,”
Comput. Fluids
,
17
(
1
), pp.
54
61
.
19.
Malashetty
,
M. S.
, and
Umavathi
,
J. C.
,
1997
, “
Two-Phase Megnetohydrodynamic Flow and Heat Transfer in an Inclined Channel
,”
Int. J. Multiphase Flow
,
23
(
3
), pp.
545
560
.
20.
Jha
,
B. K.
,
Daramola
,
D.
, and
Ajibade
,
A. O.
,
2015
, “
Mixed Convection in an Inclined Channel Filled With Porous Material Having Time Periodic Boundary Conditions: Steady Periodic Regime
,”
Transp. Porous Med.
,
109
(
2
), pp.
495
512
.
21.
Wang
,
C. C.
,
Chang
,
W. J.
,
Dai
,
C. H.
,
Lin
,
Y. T.
, and
Yang
,
K. S.
,
2012
, “
Effect of Inclination on the Convective Boiling Performance of a Microchannel Heat Sink Using HEF—7100
,”
J. Exp. Therm. Fluid Sci.
,
36
, pp.
143
148
.
22.
P.
,
R. H.
,
Green
,
D. W.
, and
Maloney
,
J. O.
,
1997
, Perrys Chemical Engineers Handbook, 7th ed,
L. A.
Robbins
, and
W. C.
Roger
, eds.,
Mc Graw-Hill
,
New York
.
23.
Ullmann
,
A.
,
Zamir
,
M.
,
Ludmer
,
Z.
, and
Brauner
,
N.
,
2003
, “
Stratified Laminar Countercurrent Flow of Two Liquid Phases in Inclined Tubes
,”
Int. J. Multiphase Flow
,
29
(
10
), pp.
1583
1604
.
24.
Arasteh
,
H.
,
Mashayekhi
,
R.
,
Ghaneifar
,
M.
,
Toghraie
,
D.
, and
Afrand
,
M.
,
2019
, “
Heat Transfer Enhancement in a Counter-Flow Sinusoidal Parallel-Plate Heat Exchanger Partially Filled With Porous Media Using Metal Foam in the Channels’ Divergent Sections
,”
J. Therm. Anal. Calorim.
,
141
(
5
), pp.
1669
1685
.
25.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2008
, “
A Bioheat Transfer Model: Forced Convection in a Channel Occupied by a Porous Medium With Counterflow
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5534
5541
.
26.
Qiao
,
Y.
,
Andersen
,
P. Q.
,
Evje
,
S.
, and
Standnes
,
D. C.
,
2017
, “
A Mixture Theory Approach to Model Co- and Counter-current Two-Phase Flow in Porous Media Accounting for Viscous Coupling
,”
Adv. Water Resour.
,
112
, pp.
170
188
.
27.
Al-Habahbeh
,
O. M.
,
Al-Saqqa
,
M.
,
Safi
,
M.
, and
Abo Khater
,
T.
,
2016
, “
Review of Magnetohydrodynamic Pump Applications
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1347
1358
.
28.
Seth
,
G. S.
,
Mahto
,
N.
,
Ansari
,
Md.
,
S.
, and
Nandkeolyar
,
R.
,
2010
, “
Combined Free and Forced Convection Flow in a Rotating Channel With Arbitrary Conducting Walls
,”
Int. J. Eng. Sci. Tech.
,
2
(
5
), pp.
184
197
.
29.
Singh
,
K. D.
, and
Pathak
,
R.
,
2012
, “
Effect of Rotation and Hall Current on Mixed Convection MHD Flow Through a Porous Medium Filled in a Vertical Channel in Presence of Thermal Radiation
,”
Ind. J. Pure Appl. Phys.
,
50
(
2
), pp.
77
85
.
30.
Seth
,
G. S.
, and
Singh
,
J. K.
,
2016
, “
Mixed Convection Hydromagnetic Flow in a Rotating Channel With Hall and Wall Conductance Effects
,”
Appl. Math. Modell.
,
40
(
4
), pp.
2783
2803
.
31.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
,
Thammanna
,
G. T.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Magnetohydrodynamic Squeezing Two-Phase Flow of Particulate Suspension in a Rotating Channel With Transpiration Cooling
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
233
(
4
), pp.
1
12
.
32.
Shakira
,
S.
,
Rameshwar
,
Y.
, and
Rani
,
H. P.
,
2014
, “
Effect of Rotating Magnetoconvection in Porous Medium in the Presence of Horizontal Magnetic Field
,”
Proceedings of 59th Congress of ISTAM
,
Alliance University
,
Bangalore, Karnataka
,
Dec. 17–20
, Paper No. 59-istam-fm-fp-263.
33.
Dwivedi
,
K.
,
Khare
,
R. K.
, and
Paul
,
A.
,
2018
, “
MHD Flow Through a Horizontal Channel Containing Porous Medium Placed Under an Inclined Magnetic Field
,”
J. Comput. Math. Sci.
,
9
(
8
), pp.
1057
1062
.
34.
Sri Ramachandra Murty
,
P.
, and
Balaji Prakash
,
G.
,
2014
, “
MHD Two-Fluid Flow and Heat Transfer Between Two Inclined Parallel Plates in a Rotating System
,”
Int. Scholarly Res. Not.
, Article ID. 256898(
2014
), pp.
1
11
.
35.
Hasnain
,
J.
,
Abbas
,
Z.
,
Sajid
,
M.
, and
Bhattacharya
,
S.
,
2015
, “
Effects of Porosity and Mixed Convection on MHD Two Phase Fluid Flow in an Inclined Channel
,”
PLoS One
,
10
(
3
), p.
e0119913
.
36.
Jie Liu
,
J.
,
Zhang
,
H.
,
Yao
,
S. C.
, and
Li
,
Y.
,
2014
, “
Porous Media Modeling of Two-Phase Microchannel Cooling of Electronic Chips With Nonuniform Power Distribution
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021008
.
37.
Sil
,
S.
,
kumar
,
M.
, and
Singh
,
S.
,
2018
, “
Solution of Constantly Inclined Rotating Two Phase Magnetohydrodynamic Flows Through Porous Media
,”
Int. J. Math. Arch.
,
9
(
3
), pp.
225
231
.
38.
Aina
,
B.
, and
Malgwi
,
P. B.
,
2019
, “
MHD Convection Fluid and Heat Transfer in an Inclined Micro Porous Channel
,”
Nonlinear Eng.
,
8
(
1
), pp.
755
763
.
39.
Raja
,
M. A. Z.
,
Mehmood
,
A.
,
Khan
,
A. A.
, and
Zameer
,
A.
,
2020
, “
Integrated Intelligent Computing for Heat Transfer and Thermal Radiation Based Two Phase MHD Nanofluid Flow Model
,”
Neural Comput. Appl.
,
32
(
7
), pp.
2845
2877
.
40.
Cozin
,
C.
,
Vicencio
,
F. E. C.
,
de Almeida Barbuto
,
F. A.
,
Morales
,
R. E. M.
,
Da Silva
,
M. J.
, and
Arruda
,
L. V. R.
,
2016
, “
Two Phase Slug Characterization Using Artificial Neural Networks
,”
IEEE Trans. Instrum. Meas.
,
65
(
3
), pp.
494
501
.
41.
Naphon
,
P.
,
Wiriyasart
,
S.
, and
Arisariyawong
,
T.
,
2018
, “
Artificial Neural Network Analysis the Pulsating Nusselt Number and Friction Factor of TiO2/Water Nanofluids in the Spirally Coiled Tube With Magnetic Field
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1152
1159
.
42.
Seetharamu
,
K. N.
,
Leela
,
V.
, and
Kotloni
,
N.
,
2017
, “
Numerical Investigation of Heat Transfer in a Micro-Porous-Channel Under Variable Wall Heat Flux and Variable Wall Temperature Boundary Conditions Using Local Thermal Non-Equilibrium Model With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
112
, pp.
201
215
.
43.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer
,
New York
.
44.
Chauhan
,
D. S.
, and
Agrawal
,
R.
,
2012
, “
Magnetohydrodynamic Convection Effects With Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous Medium
,”
J. Appl. Sci. Eng.
,
15
(
1
), pp.
1
10
.
45.
Jha
,
B. K.
, and
Aina
,
B.
,
2017
, “
Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel
,”
Int. J. Appl. Mech. Eng.
,
22
(
3
), pp.
567
582
.
46.
Khandelwal
,
M. K.
, and
Bera
,
P.
,
2012
, “
A Thermal Non-Equilibrium Perspective on Mixed Convection in a Vertical Channel
,”
Int. J. Therm. Sci.
,
56
, pp.
23
34
.
47.
Lewis
,
R. W.
,
Nithiarasu
,
P.
, and
Seetharamu
,
K. N.
,
2004
,
Fundamentals of Finite Element Method for Heat and Fluid Flow
,
John Wiley and Sons
,
New York
.
48.
Nithiarasu
,
P.
,
Lewis
,
R. W.
, and
Seetharamu
,
K. N.
,
2016
,
Fundamentals of Finite Element Method for Heat and Mass Transfer
, 2nd ed.,
John Wiley and Sons
,
New York
.
49.
Jiji
,
L. M.
,
2006
,
Heat Convection
,
Springer
,
Berlin/Heidelberg, New York
.
50.
Ganji
,
D. D.
,
Sabzehmeidani
,
Y.
, and
Sedighiamiri
,
A.
,
2018
, “Heat Transfer in Nanofluids,”
Nonlinear Systems in Heat Transfer Mathematical Modeling and Analytical Methods.
Joe Hayton
,
Chennai
, pp.
153
223
.
You do not currently have access to this content.