Abstract

The desired microstructure and mechanical properties of heat treatable 7xxx aluminum alloy can be achieved after spray quenching by controlling spray parameters. However, heat transfer behavior between specimen and quenchant is transient and complicated in quenching process. In this paper, a spray quenching system was utilized to quench for 7xxx aluminum alloy. The influence of spray parameters, including spray pressure and spray distance, on heat transfer behavior was examined and discussed. Heat flux (HF) and heat transfer coefficient (HTC) were calculated by iterative method. The results indicated that the aluminum alloy experienced transition boiling, nucleate boiling, and convection cooling regimes during spray quenching process. Heat transfer capability first increased and then decreased with the increasing of spray pressure or spray distance. A function of local heat transfer coefficient (L-HTC) which is variable in specimen surface temperature, spray parameters, and spatial location was constructed. Residual stress of 7xxx aluminum alloy plates was increased first and then slightly differed with the increase of volumetric flux.

References

1.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
.
2.
Heinz
,
A.
,
Haszler
,
A.
,
Keidel
,
C.
,
Moldenhauer
,
S.
,
Benedictus
,
R.
, and
Miller
,
W. S.
,
2000
, “
Recent Development in Aluminium Alloys for Aerospace Applications
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
102
107
.
3.
Rometsch
,
P. A.
,
Zhang
,
Y.
, and
Knight
,
S.
,
2014
, “
Heat Treatment of 7xxx Series Aluminium Alloys—Some Recent Developments
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
2003
2017
.
4.
Azarniya
,
A.
,
Taheri
,
A. K.
, and
Taheri
,
K. K.
,
2019
, “
Recent Advances in Ageing of 7xxx Series Aluminum Alloys: A Physical Metallurgy Perspective
,”
J. Alloys Compd.
,
781
, pp.
945
983
.
5.
Silk
,
E. A.
,
Golliher
,
E. L.
, and
Paneer Selvam
,
R.
,
2007
, “
Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application
,”
Energy Convers. Manage.
,
49
(
3
), pp.
453
468
.
6.
Iskandar
,
M.
,
Reyes
,
D.
,
Gaxiola
,
Y.
,
Fudge
,
E.
,
Foyos
,
J.
,
Lee
,
E. W.
,
Kalu
,
P.
,
Garmestani
,
H.
,
Ogren
,
J.
, and
Es-Said
,
O. S.
,
2003
, “
On Identifying the Most Critical Step in the Sequence of Heat Treating Operations in a 7249 Aluminum Alloy
,”
Eng. Failure Anal.
,
10
(
2
), pp.
199
207
.
7.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.
8.
Liang
,
G. T.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.
9.
Liang
,
G. T.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 2: High Temperature Boiling Regimes and Quenching Applications
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1206
1222
.
10.
Stolz
,
G.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Trans.
,
80
(
2
), pp.
20
21
.
11.
Beck
,
J. V.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
12.
Alifanov
,
O. M.
,
1994
,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
Berlin
.
13.
Lee
,
H. L.
,
Chen
,
W. L.
,
Chang
,
W. J.
, and
Yang
,
Y. C.
,
2015
, “
Estimation of Surface Heat Flux and Temperature Distributions in a Multilayer Tissue Based on the Hyperbolic Model of Heat Conduction
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1525
1534
.
14.
Tian
,
J. M.
,
Chen
,
B.
, and
Zhou
,
Z. F.
,
2017
, “
Methodology of Surface Heat Flux Estimation for 2D Multi-Layer Mediums
,”
Int. J. Heat Mass Transfer
,
114
, pp.
675
687
.
15.
Bell
,
J. B.
,
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1978
, “
Solutions of Ill-Posed Problems
,”
Math. Comput.
,
32
(
144
), pp.
1320
1322
.
16.
Zhou
,
Z. F.
,
Xu
,
T. Y.
, and
Chen
,
B.
,
2016
, “
Algorithms for the Estimation of Transient Surface Heat Flux During Ultra-Fast Surface Cooling
,”
Int. J. Heat Mass Transfer
,
100
, pp.
1
10
.
17.
Xu
,
F. C.
, and
Gadala
,
M. S.
,
2006
, “
Heat Transfer Behavior in the Impingement Zone Under Circular Water Jet
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3785
3799
.
18.
Malinowski
,
Z.
,
Telejko
,
T.
,
Hadała
,
B.
,
Cebo-Rudnicka
,
A.
, and
Szajding
,
A.
,
2014
, “
Dedicated Three Dimensional Numerical Models for the Inverse Determination of the Heat Flux and Heat Transfer Coefficient Distributions Over the Metal Plate Surface Cooled by Water
,”
Int. J. Heat Mass Transfer
,
75
, pp.
347
361
.
19.
Hadała
,
B.
,
Malinowski
,
Z.
, and
Szajding
,
A.
,
2017
, “
Solution Strategy for the Inverse Determination of the Specially Varying Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
104
, pp.
993
1007
.
20.
Hadała
,
B.
,
Malinowski
,
Z.
,
Telejko
,
T.
,
Szajding
,
A.
, and
Cebo-Rudnicka
,
A.
,
2019
, “
Experimental Identification and a Model of a Local Heat Transfer Coefficient for Water—Air Assisted Spray Cooling of Vertical Low Conductivity Steel Plates From High Temperature
,”
Int. J. Therm. Sci.
,
136
, pp.
200
216
.
21.
Cebo-Rudnicka
,
A.
, and
Malinowski
,
Z.
,
2019
, “
Identification of Heat Flux and Heat Transfer Coefficient During Water Spray Cooling of Horizontal Copper Plate
,”
Int. J. Therm. Sci.
,
145
, pp.
1
24
.
22.
Gao
,
T. H.
,
Ying
,
L.
,
Dai
,
M. H.
,
Shen
,
G. Z.
,
Hu
,
P.
, and
Shen
,
L. M.
,
2019
, “
A Comparative Study of Temperature-Dependent Interfacial Heat Transfer Coefficient Prediction Methods for 22MnB5 Steel in Spray Quenching Process
,”
Int. J. Therm. Sci.
,
139
, pp.
36
60
.
23.
Mascarenhas
,
N.
, and
Mudawar
,
I.
,
2010
, “
Analytical and Computational Methodology for Modeling Spray Quenching of Solid Alloy Cylinders
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5871
5883
.
24.
Mascarenhas
,
N.
, and
Mudawar
,
I.
,
2012
, “
Methodology for Predicting Spray Quenching of Thick-Walled Metal Alloy Tubes
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
2953
2964
.
25.
Xu
,
R.
,
Li
,
L. X.
,
Zhang
,
L. Q.
,
Zhu
,
B. W.
,
Liu
,
X.
, and
Bu
,
X. B.
,
2014
, “
Influence of Pressure and Surface Roughness on the Heat Transfer Efficiency During Water Spray Quenching of 6082 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2877
2883
.
26.
Golovko
,
O.
,
Frolov
,
I.
,
Rodman
,
D.
,
Nürnberger
,
F.
,
Grydin
,
O.
, and
Schaper
,
M.
,
2014
, “
Spray Cooling of Extruded EN AW-6082 Aluminium Alloy Sheets: Spatial Heat Transfer Coefficients
,”
Forsch Ingenieurwes
,
78
(
3–4
), pp.
131
137
.
27.
Guo
,
R. C.
,
Wu
,
J. J.
,
Fan
,
H.
, and
Zhan
,
X. P.
,
2016
, “
The Effects of Spray Characteristic on Heat Transfer During Spray Quenching of Aluminum Alloy 2024
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
211
220
.
28.
Guo
,
R. C.
,
Wu
,
J. J.
,
Liu
,
W. P.
,
Zhang
,
Z. K.
,
Wang
,
M. Z.
, and
Guo
,
S. C.
,
2016
, “
Investigation of Heat Transfer on 2024 Aluminum Alloy Thin Sheets by Water Spray Quenching
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
249
257
.
29.
Fang
,
Y.
,
Woche
,
H.
, and
Specht
,
E.
,
2020
, “
Influence of Surface Roughness on Heat Transfer During Quenching Hot Metals With Different Nozzles
,”
Heat Mass Transfer
,
56
(
8
), pp.
2355
2365
.
30.
Freund
,
S.
,
Pautsch
,
A. G.
,
Shedd
,
T. A.
, and
Kabelac
,
S.
,
2007
, “
Local Heat Transfer Coefficients in Spray Cooling Systems Measured With Temperature Oscillation IR Thermography
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1953
1962
.
31.
Freund
,
S.
, and
Kabelac
,
S.
,
2010
, “
Investigation of Local Heat Transfer Coefficients in Plate Heat Exchangers With Temperature Oscillation IR Thermography and CFD
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3764
3781
.
32.
Jin
,
S. H.
, and
Hrnjak
,
P.
,
2017
, “
A New Method to Simultaneously Measure Local Heat Transfer and Visualize Flow Boiling in Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
113
, pp.
635
646
.
33.
Li
,
Y. N.
,
Zhang
,
Y. A.
,
Li
,
X. W.
,
Li
,
Z. H.
,
Wang
,
G. J.
,
Jin
,
L. B.
,
Huang
,
S. H.
, and
Xiong
,
B. Q.
,
2019
, “
Quenching Residual Stress Distributions in Aluminum Alloy Plates With Different Dimensions
,”
Rare Met.
,
38
(
11
), pp.
1051
1061
.
34.
Zhai
,
W. M.
, and
Yu
,
C. X.
,
1989
, “
An Adaptive Iteration Scheme for the Determination of Temperature Fields and Heat-Transfer Coefficients of Internal Combustion Engine Pistons
,”
J. Southwest Jiaotong Univ.
,
24
(
1
), pp.
76
84
.
35.
Liu
,
S. D.
,
Zhong
,
Q. M.
,
Zhang
,
Y.
,
Liu
,
W. J.
,
Zhang
,
X. M.
, and
Deng
,
Y. L.
,
2010
, “
Investigation of Quench Sensitivity of High Strength Al–Zn–Mg–Cu Alloys by Time–Temperature-Properties Diagrams
,”
Mater. Des.
,
31
(
6
), pp.
3116
3120
.
36.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
37.
Mudawar
,
I.
, and
Estes
,
K. A.
,
1996
, “
Optimizing and Predicting CHF in Spray Cooling of a Square Surface
,”
ASME J. Heat Trans.
,
118
(
3
), pp.
672
679
.
You do not currently have access to this content.