Abstract

Increasing interest in the use of ceramic matrix composites (CMCs) for gas turbine engine hot gas path components requires a thorough examination of the thermal behavior one may expect of such components. Their highly anisotropic thermal conductivity is a substantial departure from traditional metallic components and can influence the temperature distribution in surprising ways. With the ultimate surface temperature dependent on the internal cooling scheme, including cooling from within the film cooling holes themselves, as well as the external film cooling, the relative influence of these contributions to cooling can be affected by the directionality of the thermal conductivity. Conjugate heat transfer computational simulations were performed to evaluate the effect of anisotropy in the leading edge region of a turbine component. The leading edge region is modeled as a fully film-cooled half cylinder with a flat afterbody. Changing the anisotropic directionality of the thermal conductivity is shown to have nearly the same effect on temperature distribution over the surface of the leading edge as increasing the thermal conductivity by a factor of four. While structural considerations with CMC components are often paramount, designers should be aware of the thermal ramifications associated with the selection of the CMC lay-up.

References

1.
Tian
,
T.
, and
Cole
,
K. D.
,
2012
, “
Anisotropic Thermal Conductivity Measurements of Carbon Fiber/Epoxy Composite Materials
,”
Int. J. Heat Mass Transfer
,
55
(
23
), pp.
6530
6537
.
2.
Dasgupta
,
A.
, and
Agarwal
,
R. K.
,
1992
, “
Orthotropic Thermal Conductivities of Plain-Weave Fabric Composites Using Homogenization Technique
,”
J. Compos. Mater.
,
26
(
18
), pp.
2736
2758
.
3.
Sweeting
,
R. D.
,
2004
, “
Measurement of Thermal Conductivity for Fibre-Reinforced Composites
,”
Composites, Part A
,
35
(
7–8
), pp.
933
938
.
4.
Borca-Tasciuc
,
T.
, and
Chen
,
G.
,
2005
, “
Anisotropic Thermal Properties of Nanochanneled Alumina Templates
,”
J. Appl. Phys.
,
97
(
8
), pp.
505
513
.
5.
DiCarlo
,
J. A.
, and
van Roode
,
M.
,
2006
, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,”
ASME Turbo Expo
, Paper No. GT2006-90151.
6.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Turbo Expo
, Paper No. GT2004-5398.
7.
Stewart
,
W. R.
, and
Dyson
,
T. E.
,
2017
, “
Conjugate Heat Transfer Scaling for Inconel 718
,”
ASME Turbo Expo
, Paper No. GT2017-64873.
8.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
9.
Özışık
,
M. N.
,
1980
,
Heat Conduction
,
John Wiley & Sons
,
Hoboken, NJ
.
10.
Onsagar
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes I
,”
Phys. Rev.
,
37
(
4
), pp.
405
726
.
11.
Onsagar
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes II
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.
12.
Casimir
,
H. B. G.
,
1945
, “
On Onsager's Principle of Microscopic Reversibility
,”
Rev. Mod. Phys.
,
17
(
2–3
), pp.
343
350
.
13.
DiCarlo
,
J. A.
, and
van Roode
,
M.
,
2006
, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,”
ASME Turbo Expo
, Paper No. GT2006-90151.
14.
Boyle
,
R. J.
,
Parikh
,
A. H.
, and
Nagpal
,
V. K.
,
2019
, “
Design Considerations for Ceramic Matrix Composite High Pressure Turbine Blades
,”
ASME Turbo Expo
, Paper No. GT2019-91787.
15.
Tu
,
Z.
,
Mao
,
J.
,
Jiang
,
H.
,
Han
,
X.
, and
He
,
Z.
,
2017
, “
Numerical Method for the Thermal Analysis of a Ceramic Matrix Composite Turbine Vane Considering the Spatial Variation of the Anisotropic Thermal Conductivity
,”
Appl. Therm. Eng.
,
127
, pp.
436
452
.
16.
Bryant
,
C. E.
, and
Rutledge
,
J. L.
,
2021
, “
Conjugate Heat Transfer Simulations to Evaluate the Effect of Anisotropic Thermal Conductivity on Overall Cooling Effectiveness
,”
J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061013
.
17.
Bryant
,
C. E.
, and
Rutledge
,
J. L.
,
2020
, “
A Computational Technique to Evaluate the Relative Influence of Internal and External Cooling on Overall Effectiveness
,”
ASME J. Turbomach.
,
142
(
5
), p.
051008
.
18.
Bryant
,
C. E.
,
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2019
, “
Experimental Evaluations of the Relative Contributions to Overall Effectiveness in Turbine Blade Leading Edge Cooling
,”
ASME J. Turbomach.
,
141
(
4
), p.
041007
.
19.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
20.
Rutledge
,
J. L.
,
Polanka
,
M. D.
, and
Bogard
,
D. G.
,
2016
, “
The Delta Phi Method of Evaluating Overall Film Cooling Performance
,”
ASME J. Turbomach.
,
138
(
7
), p.
071006
.
You do not currently have access to this content.