Abstract

A passive infrared suppression (IRS) device is an important and integral part of the modern naval/cargo ships, fighter jets, and helicopters to cool down the hot exhaust gas to suppress the infrared (IR) signatures. A modified IRS device has been proposed by putting inward/outward guides. The air entrainment and temperature ratios of the new type IRS device have been investigated by solving transport equations (continuity, momentum, energy, and turbulence) using the finite volume solver in ansys fluent. The Reynolds number (Ren), guide lengths (Lg/Dn), the inclination angle of guides (θg), overlap-height (Hov/Dn), and outlet temperature ratio (Tout/T) have been varied in the range of 1.5 × 10–1.5 × 106, 0–0.326, 0–75 deg, −0.326–0.018, and 1.243–2.576, respectively. It has been observed that the dimensional air entrainment increases with the Reynolds number and inlet temperature. The guide length alters the flow inside the IRS device and affects the entrainment ratio. We observed that, at the optimal value of guide length (Lg/Dn = 0.163) and inclination angle (θg = 15 deg), the IRS device entrains the maximum air, and attains a minimum temperature at the outlet. The mass suction and the outlet temperature of two different types of IRS devices have also been compared to choose the best one for the practical engineering application. An empirical correlation equation for air entrainment has been developed using nonlinear regression analysis.

References

1.
Ashforth-Frost
,
S.
, and
Jambunathan
,
J.
,
1996
, “
Effect of Nozzle Geometry and Semi Confinement on the Potential Core of a Turbulent Axisymmetric Free Jet
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
155
162
.
2.
Kandakure
,
M. T.
,
Patkar
,
V. C.
, and
Patwardhan
,
A. W.
,
2008
, “
Characteristics of Turbulent Confined Jets
,”
Chem. Eng. Process.: Process Intens.
,
47
(
8
), pp.
1234
1245
.
3.
Singh
,
G.
,
Sundararajan
,
T.
, and
Bhaskaran
,
K. A.
,
2003
, “
Mixing and Entrainment Characteristics of Circular and Noncircular Confined Jets
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
835
842
.
4.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.
5.
Rao
,
G. A.
, and
Mahulikar
,
S. P.
,
2005
, “
Effect of Atmospheric Transmission and Radiance on Aircraft Infrared Signatures
,”
J. Aircr.
,
42
(
4
), pp.
1046
1054
.
6.
Rao
,
G. A.
, and
Mahulikar
,
S. P.
,
2002
, “
Integrated Review of Stealth Technology and Its Role in Airpower
,”
Aeronaut. J.
,
106
(
1066
), pp.
629
641
.
7.
Baranwal
,
N.
, and
Mahulikar
,
S. P.
,
2019
, “
Review of Infrared Signature Suppression Systems Using Optical Blocking Method
,”
Def. Technol.
,
15
(
3
), pp.
432
439
.
8.
Werle
,
M.
,
Presz
,
W.
, and
Paterson
,
R.
,
1987
, “
Flow Structure in a Periodic Axial Vortex Array
,”
Proceedings of the 25th Aerospace Sciences Meeting
,
Reno, NV
,
January 12–15
, AIAA Paper No. 87-0610.
9.
McCormick
,
D. C.
, and
Bennet Jr
,
J. C.
,
1993
, “
Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer
,”
Proceedings of the 25th Aerospace Sciences Meeting
,
Reno, NV
,
January 12–15
, pp.
1852
1859
, AIAA Paper No. 93-0219.
10.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigation of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.
11.
Shan
,
Y.
, and
Zhang
,
J.
,
2009
, “
Numerical Investigation of Flow Mixture Enhancement and Infrared Radiation Shield by Lobed Forced Mixer
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3687
3695
.
12.
Crowe
,
D. S.
, and
Martin
,
C. L.
,
2015
, “
Effect of Geometry on the Exit Temperature From Serpentine Exhaust Nozzles
,”
Proceedings of the 53rd AIAA Aerospace Meetings
,
Kissimmee, FL
,
Jan. 5–9
, pp.
1
41
.
13.
Crowe
,
D. S.
, and
Martin
,
C. L.
,
2016
, “
Hot Streak Characterization in Serpentine Exhaust Nozzles
,”
Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
,
July 25–27
, pp.
1
12
.
14.
Shan
,
Y.
,
Pan
,
C.
, and
Zhang
,
J.
,
2015
, “
Investigation on Incompressible Lobed Mixer-Ejector Performance
,”
J. Propuls. Power
,
31
(
1
), pp.
265
277
.
15.
Sun
,
X.
,
Wang
,
Z.
,
Zhou
,
L.
,
Liu
,
Z.
, and
Shi
,
J.
,
2016
, “
Influences of Design Parameters on a Double Serpentine Convergent Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072301
.
16.
Im
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.
17.
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2011
, “
Influence of Geometry on Starting Vortex and Ejector Performance
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051204
.
18.
Thompson
,
J.
,
Vaitekunas
,
D.
, and
Birk
,
A. M.
,
1998
, “
IR Signature Suppression of Modern Naval Ships
,”
ASNE 21st Century Combatant Technology Symposium
,
Biloxi, MS
,
Jan. 27–30
.
19.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2009
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.
20.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.
21.
Sahu
,
S. R.
, and
Mishra
,
D. P.
,
2016
, “
Numerical Investigation of Maximum Air Entrainment Into Cylindrical Louvered Pipe
,”
Int. J. Automot. Mech. Eng.
,
13
(
2
), pp.
3278
3292
.
22.
Sahu
,
S. R.
, and
Mishra
,
D. P.
,
2017
, “
Maximum Air Suction Into Horizontal Open Ended Cylindrical Louvered Pipe
,”
J. Eng. Sci. Technol.
,
2
(
2
), pp.
388
404
.
23.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvered Funnel
,”
Appl. Ocean Res.
,
48
(
10
), pp.
176
185
.
24.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
(
7
), pp.
26
38
.
25.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
(
8
), pp.
303
312
.
26.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
(
10
), pp.
33
44
.
27.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
(
7
), p.
106355
.
28.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Device
,”
Int. J. Therm. Sci.
,
141
(
7
), pp.
114
132
.
29.
Singh
,
P.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2009
, “
Experimental Investigation of Non-Circular Ejector Air Diffuser
,”
Proceedings of the 39th AIAA Fluid Dynamics Conference
,
San Antonio, TX
,
June 22–25
, Paper No. 4213-23.
30.
Singh
,
P.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2014
, “
Effect of Number of Slots and Overlap on the Performance of Non-Circular Ejector Air Diffuser
,”
Proceedings of the 32nd Applied Aerodynamics Conference
,
Atlanta, GA
,
June 16–20
, Paper No. AIAA 2837.
31.
Singh
,
P.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2018
, “
Studies on Stepped Air Ejector Diffusers Incorporating Heat Transfer Effects
,”
Int. J. Turbo Jet Engines
,
35
(
3
), pp.
251
263
.
32.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2018
, “
Effect of Standoff Distance and Area Ratio on the Performance of Circular Exhaust Ejector Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng. G J. Aerosp. Eng.
,
232
(
2
), pp.
2821
2832
.
33.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2021
, “
Enhancement of Air Entrainment in Ejector-Diffuser Using Plate Guidance at Slots to Reduce Infrared Emission
,”
Proc. Inst. Mech. Eng. G J. Aerosp. Eng.
,
235
(
10
), pp.
1284
1305
.
34.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2020
, “
Effect of Reynolds Number and Slot Guidance on Passive Infrared Suppression Device
,”
Aerosp. Sci. Technol.
,
99
(
4
), p.
105732
.
35.
Jha
,
P. K.
, and
Dash
,
S. K.
,
2004
, “
Employment of Different Turbulence Models to the Design of Optimum Steel Flows in a Tundish
,”
Int. J. Numer. Methods Heat Fluid Flow
,
14
(
8
), pp.
953
979
.
36.
Pritchard
,
R.
,
Guy
,
J. J.
, and
Connor
,
N. E.
,
1977
,
Handbook of Industrial Gas Utilization: Engineering Principles and Practices
, 1st ed.,
Bowker Publishing Company
,
New York
.
37.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetric Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.
38.
Becker
,
H. A.
,
Hottel
,
H. C.
, and
Williams
,
G. C.
,
1962
, “
Mixing and Flow in Ducted Turbulent Jets
,”
Proceedings of the 9th International Symposium Combustion
,
Pittsburgh, PA
,
Aug. 27–Sept. 1
.
39.
FLUENT Manual
,
2006
, FLUENT Inc., Lebanon, NH
40.
Sahoo
,
A. K.
,
Barik
,
A. K.
, and
Swain
,
P. K.
,
2021
, “
Evolutionary Design of Novel Coolant Passages for Cooling a Square Substrate by Single Stream
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
081802
.
41.
Barik
,
A. K.
,
Rout
,
S.
, and
Patro
,
P.
,
2020
, “
Evolution of Designs for Constructal Cooling of a Square Plate Using Water, Ionic Liquid, and Nano-Enhanced Ionic Liquids
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021020
.
42.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082101
.
You do not currently have access to this content.