Abstract

The present paper focuses on the thermohydraulic performance of a car radiator using Al2O3, CuO, and TiO2 nanoparticles disseminated in an equal fraction in the range of 0.06–0.12% called Ternary hybrid nanofluid (THNF), in water-based fluid, operated at coolant flowrate (CFR) range of 3–8 lpm and fan air velocity of 0.25–1.25 m/s). Moreover, a detailed accentuation has been given on the extensive nanofluid characterization mainly thermophysical properties and its stability, to justify nanofluid durability for the long run (scanning electron microscope, Zeta potential). Performance evaluation criteria (PEC) and friction factors were analyzed to evaluate the penalty in pressure drop for the heat transfer enhancement achieved. The experimental analysis revealed a maximum heat transfer enhancement in the coolant of 14.2% at CFR of 6lpm using 0.12% vol. fraction of THNF. The PEC value found within the limit of 1.0045–1.098 indicates a remarkable heat transfer enhancement on nanoparticle addition. Concurrently fuel elevated temperature improved thermal efficiency by 13.6% at 0.25 m/s of frontal air velocity during a maximum fuel-saving of 14.28% at 50% load on the engine. Hence, the preheating of fuel through the radiator waste heat improves the thermal efficiency, lowers the brake-specific fuel consumption, and saves fuel consumption successfully.

References

1.
Alam
,
T.
, and
Kim
,
M. H.
,
2018
, “
A Comprehensive Review on Single Phase Heat Transfer Enhancement Techniques in Heat Exchanger Applications
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
813
839
.
2.
Mukkamala
,
Y.
,
2017
, “
Contemporary Trends in Thermo-hydraulic Testing and Modeling of Automotive Radiators Deploying Nano-Coolants and Aerodynamically Efficient Air-Side Fins
,”
Renew. Sustain. Energy Rev.
,
76
(
1
), pp.
1208
1229
.
3.
Bigdeli
,
M. B.
,
Fasano
,
M.
,
Cardellini
,
A.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2016
, “
A Review on the Heat and Mass Transfer Phenomena in Nanofluid Coolants With Special Focus on Automotive Applications
,”
Renew. Sustain. Energy Rev.
,
60
(
7
), pp.
1615
1633
.
4.
Mannekote
,
J. K.
,
Kailas
,
S. V.
,
Venkatesh
,
K.
, and
Kathyayini
,
N.
,
2018
, “
Environmentally Friendly Functional Fluids From Renewable and Sustainable Sources—A Review
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
1787
1801
.
5.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
R.
, and
Said
,
Z.
,
2017
, “
A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications
,”
Renew. Sustain. Energy Rev.
,
74
(
7
), pp.
638
670
.
6.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2022
, “
4 E’s (Energy, Exergy, Economic, Environmental) Performance Analysis of Air Heat Exchanger Equipped With Various Twisted Turbulator Inserts Utilizing Ternary Hybrid Nanofluids
,”
Alex. Eng. J.
,
61
(
7
), pp.
5033
5050
.
7.
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2013
, “
Convective Heat Transfer and Friction Factor Correlations of Nanofluid in a Tube and With Inserts: A Review
,”
Renew. Sustain. Energy Rev.
,
20
(
4
), pp.
23
35
.
8.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
S.
,
Kumar
,
S.
,
Dilbaghi
,
N.
, and
Said
,
Z.
,
2018
, “
Up to Date Review on the Synthesis and Thermophysical Properties of Hybrid Nanofluids
,”
J. Clean. Prod.
,
190
(
7
), pp.
169
192
.
9.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2020
, “
Development of a New Correlation to Determine the Viscosity of Ternary Hybrid Nanofluid
,”
Int. Comm. Heat Mass Transf.
,
111
(
2
), p.
104451
.
10.
Koca
,
H. D.
,
Doganay
,
S.
,
Turgut
,
A.
,
Tavman
,
I. H.
,
Saidur
,
R.
, and
Mahbubul
,
I. M.
,
2018
, “
Effect of Particle Size on the Viscosity of Nanofluids: A Review
,”
Renew. Sustain. Energy Rev.
,
82
(
2
), pp.
1664
1674
.
11.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids
,”
Int. Comm. Heat Mass Transf.
,
32
(
9
), pp.
1111
1118
.
12.
Zhao
,
N.
,
Li
,
S.
, and
Yang
,
J.
,
2016
, “
A Review on Nanofluids: Data-Driven Modeling of Thermalphysical Properties and the Application in Automotive Radiator
,”
Renew. Sustain. Energy Rev.
,
66
(
12
), pp.
596
616
.
13.
Elias
,
M. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Sohel
,
M. R.
,
Shahrul
,
I. M.
,
Khaleduzzaman
,
S. S.
, and
Sadeghipour
,
S.
,
2014
, “
Experimental Investigation on the Thermo-Physical Properties of Al2O3 Nanoparticles Suspended in Car Radiator Coolant
,”
Int. Comm. Heat Mass Transf.
,
54
(
5
), pp.
48
53
.
14.
Saxena
,
V.
,
Kumar
,
N.
, and
Saxena
,
V. K.
,
2017
, “
A Comprehensive Review on Combustion and Stability Aspects of Metal Nanoparticles and Its Additive Effect on Diesel and Biodiesel Fuelled CI Engine
,”
Renew. Sustain. Energy Rev.
,
70
(
4
), pp.
563
588
.
15.
Azman
,
N. F.
, and
Samion
,
S.
,
2019
, “
Dispersion Stability and Lubrication Mechanism of Nanolubricants: A Review
,”
Int. J. Pr. Eng. Man. Gt.
,
6
(
2
), pp.
393
414
.
16.
Jones
,
W. P.
,
2007
, “
Air Conditioning Engineering
,”
Routledge
,
31
(
1
), pp.
1
57
.
17.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2018
, “
Improving the Performance of Refrigeration Systems by Using Nanofluids: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
82
(
3
), pp.
3656
3669
.
18.
Said
,
Z.
,
Allagui
,
A.
,
Abdelkareem
,
M. A.
,
Alawadhi
,
H.
, and
Elsaid
,
K.
,
2018
, “
Acid-Functionalized Carbon Nanofibers for High Stability, Thermoelectrical and Electrochemical Properties of Nanofluids
,”
J. Colloid Interface Sci.
,
520
(
15
), pp.
50
57
.
19.
Zhai
,
Y.
,
Li
,
L.
,
Wang
,
J.
, and
Li
,
Z.
,
2019
, “
Evaluation of Surfactant on Stability and Thermal Performance of Al2O3-Ethylene Glycol (EG) Nanofluids
,”
Powder Technol.
,
343
(
1
), pp.
215
224
.
20.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2021
, “
Impact of Novel Dissimilar Shape Ternary Composition-Based Hybrid Nanofluids on the Thermal Performance Analysis of Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041002
.
21.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2022
, “
Analysis of Heat Exchanger Equipped With Various Twisted Turbulator Inserts Utilizing Tripartite Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
44
(
2
), pp.
1
19
.
22.
Sanukrishna
,
S. S.
, and
Prakash
,
M. J.
,
2018
, “
Experimental Studies on Thermal and Rheological Behaviour of TiO2-PAG Nanolubricant for Refrigeration System
,”
Int. J. Refrig.
,
86
(
5
), pp.
356
372
.
23.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
24.
Mojarrad
,
M. S.
,
Keshavarz
,
A.
, and
Shokouhi
,
A.
,
2013
, “
Nanofluids Thermal Behavior Analysis Using a New Dispersion Model Along With Single-Phase
,”
Heat Mass Transf.
,
49
(
9
), pp.
1333
1343
.
25.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Exergy and Energy Performance for Wavy fin Radiator With a New Coolant of Various Shape Nanoparticle-Based Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
3911
3922
.
26.
Kumar
,
V.
,
Singh
,
S. K.
,
Kumar
,
V.
,
Jamshed
,
W.
, and
Nisar
,
K. S.
,
2021
, “
Thermal and Thermo-hydraulic Behaviour of Alumina-Graphene Hybrid Nanofluid in Minichannel Heat Sink: An Experimental Study
,”
Int. J. Energy Res.
,
45
(
15
), pp.
20700
20714
.
27.
Ghazanfari
,
V.
,
Talebi
,
M.
,
Khorsandi
,
J.
, and
Abdolahi
,
R.
,
2016
, “
Effects of Water Based Al2O3, TiO2, and CuO Nanofluids as the Coolant on Solid and Annular Fuels for a Typical VVER-1000 Core
,”
Prog. Nucl. Energy
,
91
(
8
), pp.
285
294
.
28.
Said
,
Z.
,
Assad
,
M. E. H.
,
Hachicha
,
A. A.
,
Bellos
,
E.
,
Abdelkareem
,
M. A.
,
Alazaizeh
,
D. Z.
, and
Yousef
,
B. A.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renew. Sustain. Energy Rev.
,
112
(
2
), pp.
183
194
.
29.
Khan
,
A.
,
Ali
,
H. M.
,
Nazir
,
R.
,
Ali
,
R.
,
Munir
,
A.
,
Ahmad
,
B.
, and
Ahmad
,
Z.
,
2019
, “
Experimental Investigation of Enhanced Heat Transfer of a Car Radiator Using ZnO Nanoparticles in H2O–Ethylene Glycol Mixture
,”
J. Therm. Anal. Calorim.
,
138
(
5
), pp.
3007
3021
.
30.
Goudarzi
,
K.
, and
Jamali
,
H.
,
2017
, “
Heat Transfer Enhancement of Al2O3-EG Nanofluid in a Car Radiator With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
118
(
4
), pp.
510
517
.
31.
Vithayasai
,
S.
,
Kiatsiriroat
,
T.
, and
Nuntaphan
,
A.
,
2006
, “
Effect of Electric Field on Heat Transfer Performance of Automobile Radiator at Low Frontal Air Velocity
,”
Appl. Therm. Eng.
,
26
(
17
), pp.
2073
2078
.
32.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Jamnani
,
M. S.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Comm. Heat Mass Transf.
,
38
(
9
), pp.
1283
1290
.
33.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
613
621
.
34.
Heris
,
S. Z.
,
Shokrgozar
,
M.
,
Poorpharhang
,
S.
,
Shanbedi
,
M.
, and
Noie
,
S. H.
,
2014
, “
Experimental Study of Heat Transfer of a Car Radiator With CuO/Ethylene Glycol-Water as a Coolant
,”
J. Dispers. Sci. Technol.
,
35
(
5
), pp.
677
684
.
35.
Tomar
,
B. P. S.
, and
Tripathi
,
A.
,
2015
, “
Experimental Study of Heat Transfer of a Car Radiator With Nano Fluid-Al2O3 Water Mixture as Coolant
,”
Int. J. Adv. Res. Sci. Eng. Technol.
,
2
(
9
), pp.
830
837
.
36.
Sumanlal
,
M. R.
,
Nandakumar
,
S.
, and
Mohanan
,
P.
,
2017
, “
The Effect of Air Preheating on the Performance and Emission Characteristics of a DI Diesel Engine Achieving HCCI Mode of Combustion
,”
Int. J. Theor. Appl. Mech.
,
12
(
3
), pp.
411
421
.
37.
Mekonen
,
M. W.
, and
Sahoo
,
N.
,
2018
, “
Effect of Fuel Preheating with Blended Fuels and Exhaust Gas Recirculation on Diesel Engine Operating Parameters
,”
Renew. Energy Focus.
,
26
(
2
), pp.
58
70
.
38.
Feroskhan
,
M.
,
Ismail
,
S.
,
Reddy
,
M. G.
, and
Teja
,
A. S.
,
2018
, “
Effects of Charge Preheating on the Performance of a Biogas-Diesel Dual Fuel CI Engine
,”
Eng. Sci. Technol. Int. J.
,
21
(
3
), pp.
330
337
.
39.
Yilmaz
,
N.
,
2012
, “
Effects of Intake Air Preheat and Fuel Blend Ratio on a Diesel Engine Operating on Biodiesel–Methanol Blends
,”
Fuel
,
94
(
4
), pp.
444
447
.
40.
Hazar
,
H.
, and
Aydin
,
H.
,
2010
, “
Performance and Emission Evaluation of a CI Engine Fueled With Preheated Raw Rapeseed Oil (RRO)–Diesel Blends
,”
Appl. Energy
,
87
(
3
), pp.
786
790
.
41.
Shah
,
R. K.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and Parallel Plates
,”
Proceedings of the 3rd National Heat Mass Transf. Conference, Delhi: Indian Institute of Technology Bombay
,
Dec. 11–13, 1974
, pp.
11
75
.
42.
Hausen
,
H.
,
1959
, “
New Equations for Heat Transfer in Free or Force Flow
,”
Allg. Warmetchn.
,
9
(
1
), pp.
75
90
.
43.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2016
, “
Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments
,”
J. Eng. Phys. Thermo.
,
89
(
3
), pp.
758
793
.
44.
Shah
,
R. K.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Supp. Advances Heat Transf.
,
3
(
2
), pp.
153
195
.
45.
Gnielinski
,
V.
,
2013
, “
On Heat Transfer in Tubes
,”
Int. J. Heat Mass Transf.
,
63
(
2
), pp.
134
140
.
46.
Edwards
,
D. K.
,
Denny
,
V. E.
, and
Mills
,
A. F.
,
1978
, “
Transfer Processes. an Introduction to Diffusion, Convection and Radiation
,”
Series Therm. Fluids Eng.
,
44
(
2
), pp.
1
28
.
47.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
48.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int J. HeatMassTransf.
,
24
(
4
), pp.
715
726
.
49.
Maré
,
T.
,
Halelfadl
,
S.
,
Sow
,
O.
,
Estellé
,
P.
,
Duret
,
S.
, and
Bazantay
,
F.
,
2011
, “
Comparison of the Thermal Performances of Two Nanofluids at Low Temperature in a Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
35
(
8
), pp.
1535
1543
.
50.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Experimental and Numerical Study on Cooling System Waste Heat Recovery for Engine Air Preheating by Ternary Hybrid Nanofluid
,”
J. Enhanc. Heat Transf.
,
28
(
4
), pp.
1
29
.
51.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf. Int. J.
,
11
(
2
), pp.
151
170
.
52.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Poncelet
,
O.
,
Soriano
,
O.
, and
Gruss
,
J. A.
,
2013
, “
Influence of Nanoparticle Shape Factor on Convective Heat Transfer and Energetic Performance of Water-Based SiO2 and ZnO Nanofluids
,”
Appl. Therm. Eng.
,
51
(
2
), pp.
839
851
.
53.
Pandey
,
S. D.
, and
Nema
,
V. K.
,
2012
, “
Experimental Analysis of Heat Transfer and Friction Factor of Nanofluid as a Coolant in a Corrugated Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
38
(
4
), pp.
248
256
.
54.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int J. Heat Mass Transf.
,
47
(
24
), pp.
5181
5188
.
You do not currently have access to this content.